704 research outputs found

    Consciousness: the last 50 years(and the next)

    Get PDF
    The mind and brain sciences began with consciousness as a central concern. But for much of the 20th century, ideological and methodological concerns relegated its empirical study to the margins. Since the 1990s, studying consciousness has regained a legitimacy and momentum befitting its status as the primary feature of our mental lives. Nowadays, consciousness science encompasses a rich interdisciplinary mixture drawing together philosophical, theoretical, computational, experimental, and clinical perspectives, with neuroscience its central discipline. Researchers have learned a great deal about the neural mechanisms underlying global states of consciousness, distinctions between conscious and unconscious perception, and self-consciousness. Further progress will depend on specifying closer explanatory mappings between (first-person subjective) phenomenological descriptions and (third-person objective) descriptions of (embodied and embedded) neuronal mechanisms. Such progress will help reframe our understanding of our place in nature and accelerate clinical approaches to a wide range of psychiatric and neurological disorders

    On the Use of Gene Ontology Annotations to Assess Functional Similarity among Orthologs and Paralogs: A Short Report

    Get PDF
    A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011) has proposed a metric for the “functional similarity” between two genes that uses only the Gene Ontology (GO) annotations directly derived from published experimental results. Applying this metric, the authors concluded that paralogous genes within the mouse genome or the human genome are more functionally similar on average than orthologous genes between these genomes, an unexpected result with broad implications if true. We suggest, based on both theoretical and empirical considerations, that this proposed metric should not be interpreted as a functional similarity, and therefore cannot be used to support any conclusions about the “ortholog conjecture” (or, more properly, the “ortholog functional conservation hypothesis”). First, we reexamine the case studies presented by Nehrt et al. as examples of orthologs with divergent functions, and come to a very different conclusion: they actually exemplify how GO annotations for orthologous genes provide complementary information about conserved biological functions. We then show that there is a global ascertainment bias in the experiment-based GO annotations for human and mouse genes: particular types of experiments tend to be performed in different model organisms. We conclude that the reported statistical differences in annotations between pairs of orthologous genes do not reflect differences in biological function, but rather complementarity in experimental approaches. Our results underscore two general considerations for researchers proposing novel types of analysis based on the GO: 1) that GO annotations are often incomplete, potentially in a biased manner, and subject to an “open world assumption” (absence of an annotation does not imply absence of a function), and 2) that conclusions drawn from a novel, large-scale GO analysis should whenever possible be supported by careful, in-depth examination of examples, to help ensure the conclusions have a justifiable biological basis

    A Simplified Synthesis of Transmission Lines with a Tree Structure

    Full text link

    The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts

    Get PDF
    Specific guanine-rich sequence motifs in the human genome have considerable potential to form four-stranded structures known as G-quadruplexes or G4 DNA. The enrichment of these motifs in key chromosomal regions has suggested a functional role for the G-quadruplex structure in genomic regulation. In this work, we have examined the spectrum of nucleotide substitutions in G4 motifs, and related this spectrum to G4 prevalence. Data collected from the large repository of human SNPs indicates that the core feature of G-quadruplex motifs, 5′-GGG-3′, exhibits specific mutational patterns that preserve the potential for G4 formation. In particular, we find a genome-wide pattern in which sites that disrupt the guanine triplets are more conserved and less polymorphic than their neutral counterparts. This also holds when considering non-CpG sites only. However, the low level of polymorphisms in guanine tracts is not only confined to G4 motifs. A complete mapping of DNA three-mers at guanine polymorphisms indicated that short guanine tracts are the most under-represented sequence context at polymorphic sites. Furthermore, we provide evidence for a strand bias upstream of human genes. Here, a significantly lower rate of G4-disruptive SNPs on the non-template strand supports a higher relative influence of G4 formation on this strand during transcription

    The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts

    Get PDF
    Specific guanine-rich sequence motifs in the human genome have considerable potential to form four-stranded structures known as G-quadruplexes or G4 DNA. The enrichment of these motifs in key chromosomal regions has suggested a functional role for the G-quadruplex structure in genomic regulation. In this work, we have examined the spectrum of nucleotide substitutions in G4 motifs, and related this spectrum to G4 prevalence. Data collected from the large repository of human SNPs indicates that the core feature of G-quadruplex motifs, 5′-GGG-3′, exhibits specific mutational patterns that preserve the potential for G4 formation. In particular, we find a genome-wide pattern in which sites that disrupt the guanine triplets are more conserved and less polymorphic than their neutral counterparts. This also holds when considering non-CpG sites only. However, the low level of polymorphisms in guanine tracts is not only confined to G4 motifs. A complete mapping of DNA three-mers at guanine polymorphisms indicated that short guanine tracts are the most under-represented sequence context at polymorphic sites. Furthermore, we provide evidence for a strand bias upstream of human genes. Here, a significantly lower rate of G4-disruptive SNPs on the non-template strand supports a higher relative influence of G4 formation on this strand during transcription

    Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.

    Get PDF
    Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies

    Parenting Stress in CHARGE Syndrome and the Relationship with Child Characteristics

    Get PDF
    This study investigates the parental perception of stress related to the upbringing of children with CHARGE syndrome and its association with behavioral and physical child characteristics. Parents of 22 children completed the Nijmegen Parenting Stress Index-Short, Developmental Behavior Checklist, and Dutch Vineland Screener 0-12 and reported their child’s problems with hearing, vision and ability to speak. Parenting stress was high in 59% of the subjects. Behavioral problems on the depression, autism, self-absorbed and disruptive behavior scales correlated positively with parenting stress. A non-significant trend was found, namely higher stress among the parents of non-speaking children. No associations were found with other child characteristics, i.e. level of adaptive functioning and intellectual disability, auditory and visual problems, deafblindness, gender, and age. Raising a child with CHARGE syndrome is stressful; professional support is therefore essential for this population. More research into other possible influencing characteristics is needed to improve family-oriented interventions. Since CHARGE is a rare syndrome, closer international collaboration is needed, not only to expand the group of study subjects to increase statistical power, but also to harmonize research designs and measurement methods to improve the validity, the reliability, and the generalization of the findings

    QTL/microarray approach using pathway information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A combined quantitative trait loci (QTL) and microarray-based approach is commonly used to find differentially expressed genes which are then identified based on the known function of a gene in the biological process governing the trait of interest. However, a low cutoff value in individual gene analyses may result in many genes with moderate but meaningful changes in expression being missed.</p> <p>Results</p> <p>We modified a gene set analysis to identify intersection sets with significantly affected expression for which the changes in the individual gene sets are less significant. The gene expression profiles in liver tissues of four strains of mice from publicly available microarray sources were analyzed to detect trait-associated pathways using information on the QTL regions of blood concentrations of high density lipoproteins (HDL) cholesterol and insulin-like growth factor 1 (IGF-1). Several metabolic pathways related to HDL levels, including lipid metabolism, ABC transporters and cytochrome P450 pathways were detected for HDL QTL regions. Most of the pathways identified for the IGF-1 phenotype were signal transduction pathways associated with biological processes for IGF-1's regulation.</p> <p>Conclusion</p> <p>We have developed a method of identifying pathways associated with a quantitative trait using information on QTL. Our approach provides insights into genotype-phenotype relations at the level of biological pathways which may help to elucidate the genetic architecture underlying variation in phenotypic traits.</p
    corecore