1,645 research outputs found

    Probiotic Potential of Bacterial Isolates From ‘Amabere amaruranu’ Cultured Milk

    Get PDF
    Probiotics are viable nonpathogenic microbes that positively affect host health. Probiotics inhibit infection, activate immunity, and promote mucosal-barrier development. Many microbes have probiotic activity. Nonetheless, the selection of stable strains and their specific mechanism(s) of action are not fully elucidated. Bacteria from ‘Amabere amaruranu’ cultured milk from Kenya were isolated and identified by PCR sequence analysis of the 16S rRNA gene. Isolates were examined for stability to acid and bile, antimicrobial activity, mucin production, and degradation and sensitivity to antibiotics, hence their potential for probiotics. Lactobacillus isolates were acid unstable, bile-stable, nonmucinolytic, and presented antibacterial activity. L. rhamnosus cell fractions increased MUC4 and MUC3 expression in colon cells. Bacillus isolates were acid and bile stable, nonmucinolytic and lacked antimicrobial activity. In conclusion, Lactobacillus isolates that were nonmucinolytic, stable in bile, demonstrated antibacterial activity, sensitive to antibiotics, and stimulated increase MUC4 and MUC3 levels in colon cells could be potential probiotics

    Formal Concepts and Residuation on Multilattices

    Get PDF
    Multilattices are generalisations of lattices introduced by Mihail Benado in [4]. He replaced the existence of unique lower (resp. upper) bound by the existence of maximal lower (resp. minimal upper) bound(s). A multilattice will be called pure if it is not a lattice. Multilattices could be endowed with a residuation, and therefore used as set of truth-values to evaluate elements in fuzzy setting. In this paper we exhibit the smallest pure multilattice and show that it is a sub-multilattice of any pure multilattice. We also prove that any bounded residuated multilattice that is not a residuated lattice has at least seven elements. We apply the ordinal sum construction to get more examples of residuated multilattices that are not residuated lattices. We then use these residuated multilattices to evaluate objects and attributes in formal concept analysis setting, and describe the structure of the set of corresponding formal concepts. More precisely, i

    Candidate molecular ions for an electron electric dipole moment experiment

    Get PDF
    This paper is a theoretical work in support of a newly proposed experiment (R. Stutz and E. Cornell, Bull. Am. Soc. Phys. 89, 76 2004) that promises greater sensitivity to measurements of the electron's electric dipole moment (EDM) based on the trapping of molecular ions. Such an experiment requires the choice of a suitable molecule that is both experimentally feasible and possesses an expectation of a reasonable EDM signal. We find that the molecular ions PtH+, HfH+, and HfF+ are suitable candidates in their low-lying triplet Delta states. In particular, we anticipate that the effective electric fields generated inside these molecules are approximately of 73 GV/cm, -17 GV/cm, and -18 GV/cm respectively. As a byproduct of this discussion, we also explain how to make estimates of the size of the effective electric field acting in a molecule, using commercially available, nonrelativistic molecular structure software.Comment: 25 pages, 3 figures, submitted to Physical Review

    Formal Concepts and Residuation on Multilattices}

    Full text link
    Let Ai:=(Ai,≀i,⊀i,⊙i,→i,⊄i)\mathcal{A}_i: =(A_i,\le_i,\top_i,\odot_i,\to_i,\bot_i), i=1,2i=1,2 be two complete residuated multilattices, GG (set of objects) and MM (set of attributes) be two nonempty sets and (φ,ψ)(\varphi, \psi) a Galois connection between A1GA_1^G and A2MA_2^M. In this work we prove that C:={(h,f)∈A1G×A2MâˆŁÏ†(h)=f and ψ(f)=h}\mathcal{C}: =\{(h,f)\in A_1^G\times A_2^M \mid \varphi(h)=f \text{ and } \psi(f)=h \} is a complete residuated multilattice. This is a generalization of a result by Ruiz-Calvi{\~n}o and Medina \cite{RM12} saying that if the (reduct of the) algebras Ai\mathcal{A}_i, i=1,2i=1,2 are complete multilattices, then C\mathcal{C} is a complete multilattice.Comment: 14 pages, 3 figure

    Some results on ideals of multilattices

    Get PDF

    Clonidine, dexmedetomidine: alpha-2 adrenergic receptor agonists in neuroscience

    Get PDF
    The alpha-2 adrenergic receptor (α-2 AR) agonists have a long history of use in treating different clinical conditions, such as hypertension, psychiatric entities (e.g., attention-deficit hyperactivity disorder), chronic pain, panic disorders, and, lately, for treating opioid withdrawal syndrome. In recent years, α-2 AR medications have been administered as adjuncts for managing inflammatory conditions, depression, chronic pain, sleep and cognitive disorders. This review will provide some clinical applications in neuroscience for this class of drugs. Understanding the pharmacological mechanisms is essential to obtaining neurochemical data that demonstrate that α-2 AR agonists have potential clinical significance in neuroscience

    Kinematic Characterisation of Hexapods for Industry

    Get PDF
    International audiencePurpose-The aim of this paper is to propose two simple tools for the kinematic characterization of hexapods. The paper also aims to share the authors' experience with converting a popular commercial motion base (Stewart-Gough platform, hex-apod) to an industrial robot for use in heavy duty aerospace manufacturing processes. Design/methodology/approach-The complete workspace of a hexapod is a six-dimensional entity that is impossible to visualize. Thus, nearly all hexapod manufacturers simply state the extrema of each of the six dimensions, which is very misleading. As a compromise, we propose a special three-dimensional subset of the complete workspace, an approximation of which can be readily obtained using a CAD/CAM software suite, such as CATIA. While calibration techniques for serial robots are readily available, there is still no generally-agreed procedure for calibrating hexapods. We propose a simple calibration method that relies on the use of a laser tracker and requires no programming at all. Instead, the design parameters of the hexapod are directly and individually measured and the few computations involved are performed in a CAD/CAM software such as CATIA. Findings-The conventional octahedral hexapod design has a very limited workspace, though free of singularities. There are important deviations between the actual and the specified kinematic model in a commercial motion base. Practical implications-A commercial motion base can be used as a precision positioning device with its controller retrofit-ted with state-of-the-art motion control technology with accurate workspace and geometric characteristics. Originality/value-A novel geometric approach for obtaining meaningful measures of the workspace is proposed. A novel, systematic procedure for the calibration of a hexapod is outlined. Finally, experimental results are presented and discussed

    Optimization of CABRI power transients with the SPARTE code and the URANIE uncertainty platform

    Get PDF
    International audienceIn a Pressurized Water Reactor (PWR), the rod ejection is a design basis accident for uncontrolled evolution of the nuclear reaction.In case of failure of a rod mechanism, the rod ejection is caused by the pressure differential between the primary loop (155 bar) and the confinement-s enclosure (atmospheric pressure).It leads to a local power transient and a fast fuel temperature increase.The power transient is limited by the reactivity feedbacks before the automatic reactor shutdown.The CABRI experimental pulsed reactor is funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and is operated by CEA at the Cadarache research center.It is designed to study fuel rods behavior under Reactivity Initiated Accident (RIA) conditions.The tested fuel rod is placed at the center of the CABRI core, inside a pressurized water loop reproducing PWR conditions.CABRI is a pool type reactor, made of 1487 UO2_2 fuel rods and controlled by 6 Hafnium control rods.A specific device allows the fast depressurization of 3^3He contained in 4 transient rods to reproduce control rods ejection conditions.Based on a BEPU approach, we developed a tool, named SPARTE, for CABRI power transients calculation.This tool is based on point kinetics, simplified thermal-hydraulics and thermal-mechanics.It computes the global behavior of the core by the calculation of a mean fuel rod. It includes models of reactivity insertion specific to the CABRI transient rods system, variable kinetics parameters and variable Doppler coefficient.This code is validated on the basis of 66 CABRI start-up power transients realized during the first quarter of 2017. One goal of the SPARTE code is to be used for the prediction of future CABRI power transients.This paper focuses on methods for optimizing a specific CABRI power transient (FWHM ≃\simeq 30 ms, Deposited energy ≃\simeq 130 MJMJ) using the target characteristics of the pulse. The selection of a method may help the experimentalists and the operation team to minimize the number of white- power transients to perform before the final test with the fuel sample. The optimization can lead to different results, that can be ranked according to their projected uncertainties. Different optimization methods are tested and compared in this paper. The Subplex method based on reiterations of the Nelder-Mead algorithm (simplex method) was selected for its high precision. Indeed, the CABRI power transients are not completely reproducible and present some uncertainties linked to the test parameters. This article focuses on the uncertainties propagation in order to identify and select the parameters that minimize the output uncertainties. The results are very satisfactory and lead to several optimized scenarios that will be tested during the next qualification test campaign
    • 

    corecore