105 research outputs found

    Molecular mediators of the association between child obesity and mental health

    Get PDF
    Biological mechanisms underlying the association between obesity and depression remain unclear. We investigated the role of metabolites and DNA methylation as mediators of the relationship between childhood obesity and subsequent poor mental health in the English Avon Longitudinal Study of Parents and Children. Obesity was defined according to United Kingdom Growth charts at age 7 years and mental health through the Short Mood and Feelings Questionnaire (SMFQ) completed at age 11 years. Metabolites and DNA methylation were measured by nuclear magnetic resonance spectroscopy and Illumina array in blood at the age of 7 years. The associations between obesity and SMFQ score, as continuous count data or using cut-offs to define depressive symptoms (SMFQ >7) or depression (SMFQ >11), were tested using adjusted Poisson and logistic regression. Candidate metabolite mediators were identified through metabolome-wide association scans for obesity and SMFQ score, correcting for false-discovery rate. Candidate DNA methylation mediators were identified through testing the association of putative BMI-associated CpG sites with SMFQ scores, correcting for look-up false-discovery rate. Mediation by candidate molecular markers was tested. Two-sample Mendelian randomization (MR) analyses were additionally applied to test causal associations of metabolites with depression in independent adult samples. 4,018 and 768 children were included for metabolomics and epigenetics analyses, respectively. Obesity at 7 years was associated with a 14% increase in SMFQ score (95% CI: 1.04, 1.25) and greater odds of depression (OR: 1.46 (95% CI: 0.78, 2.38) at 11 years. Natural indirect effects (mediating pathways) between obesity and depression for tyrosine, leucine and conjugated linoleic acid were 1.06 (95% CI: 1.00, 1.13, proportion mediated (PM): 15%), 1.04 (95% CI: 0.99, 1.10, PM: 9.6%) and 1.06 (95% CI: 1.00, 1.12, PM: 13.9%) respectively. In MR analysis, one unit increase in tyrosine was associated with 0.13 higher log odds of depression (p = 0.1). Methylation at cg17128312, located in the FBXW9 gene, had a natural indirect effect of 1.05 (95% CI: 1.01,1.13, PM: 27%) as a mediator of obesity and SMFQ score. Potential biologically plausible mechanisms involving these identified molecular features include neurotransmitter regulation, inflammation, and gut microbiome modulation. These results require replication in further observational and mechanistic studies

    Helicobacter pylori CagA Disrupts Epithelial Patterning by Activating Myosin Light Chain

    Get PDF
    Helicobacter pylori infection is a leading cause of ulcers and gastric cancer. We show that expression of the H. pylori virulence factor CagA in a model Drosophila melanogaster epithelium induces morphological disruptions including ectopic furrowing. We find that CagA alters the distribution and increases the levels of activated myosin regulatory light chain (MLC), a key regulator of epithelial integrity. Reducing MLC activity suppresses CagA-induced disruptions. A CagA mutant lacking EPIYA motifs (CagAEPISA) induces less epithelial disruption and is not targeted to apical foci like wild-type CagA. In a cell culture model in which CagAEPISA and CagA have equivalent subcellular localization, CagAEPISA is equally potent in activating MLC. Therefore, in our transgenic system, CagA is targeted by EPIYA motifs to a specific apical region of the epithelium where it efficiently activates MLC to disrupt epithelial integrity

    Long-term follow-up after cancer rehabilitation using high-intensity resistance training: persistent improvement of physical performance and quality of life

    Get PDF
    The short-term beneficial effects of physical rehabilitation programmes after cancer treatment have been described. However, little is known regarding the long-term effects. The purpose of this study was to investigate the long-term effects of high-intensity resistance training compared with traditional recovery. A total of 68 cancer survivors who completed an 18-week resistance training programme were followed for 1 year. During the 1-year follow-up, 19 patients dropped out (14 due to recurrence of cancer). The remaining 49 patients of the intervention group were compared with a group of 22 patients treated with chemotherapy in the same period but not participating in any rehabilitation programme. Outcome measures were muscle strength, cardiopulmonary function, fatigue, and health-related quality of life. One year after completion of the rehabilitation programme, the outcome measures in the intervention group were still at the same level as immediately after rehabilitation. Muscle strength at 1 year was significantly higher in patients who completed the resistance training programme than in the comparison group. High-intensity resistance training has persistent effects on muscle strength, cardiopulmonary function, quality of life, and fatigue. Rehabilitation programmes for patients treated with chemotherapy with a curative intention should include high-intensity resistance training in their programme

    Transcriptional Regulation by CHIP/LDB Complexes

    Get PDF
    It is increasingly clear that transcription factors play versatile roles in turning genes “on” or “off” depending on cellular context via the various transcription complexes they form. This poses a major challenge in unraveling combinatorial transcription complex codes. Here we use the powerful genetics of Drosophila combined with microarray and bioinformatics analyses to tackle this challenge. The nuclear adaptor CHIP/LDB is a major developmental regulator capable of forming tissue-specific transcription complexes with various types of transcription factors and cofactors, making it a valuable model to study the intricacies of gene regulation. To date only few CHIP/LDB complexes target genes have been identified, and possible tissue-dependent crosstalk between these complexes has not been rigorously explored. SSDP proteins protect CHIP/LDB complexes from proteasome dependent degradation and are rate-limiting cofactors for these complexes. By using mutations in SSDP, we identified 189 down-stream targets of CHIP/LDB and show that these genes are enriched for the binding sites of APTEROUS (AP) and PANNIER (PNR), two well studied transcription factors associated with CHIP/LDB complexes. We performed extensive genetic screens and identified target genes that genetically interact with components of CHIP/LDB complexes in directing the development of the wings (28 genes) and thoracic bristles (23 genes). Moreover, by in vivo RNAi silencing we uncovered novel roles for two of the target genes, xbp1 and Gs-alpha, in early development of these structures. Taken together, our results suggest that loss of SSDP disrupts the normal balance between the CHIP-AP and the CHIP-PNR transcription complexes, resulting in down-regulation of CHIP-AP target genes and the concomitant up-regulation of CHIP-PNR target genes. Understanding the combinatorial nature of transcription complexes as presented here is crucial to the study of transcription regulation of gene batteries required for development

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Hypomorphic function and somatic reversion of DOCK8 cause combined immunodeficiency without hyper IgE

    Get PDF
    Highlights: Whole exome sequencing identified the underlying defect in a patient with combined immunodeficiency.A novel compound heterozygous DOCK8 mutation was identified.Expression of a truncated DOCK8 protein with hypomorphic function was identified.Somatic reversion of DOCK8 mainly in T cells was identified.DOCK8 deficiency may present without severe viral infections and increased serum IgE levels.Abstract: Loss of function mutations in DOCK8 are linked to hyper-IgE syndrome. Patients typically present with recurrent inopulmonary infections, severe cutaneous viral infections, food allergies and elevated serum IgE. Although patients may present with a spectrum of disease-related symptoms, molecular mechanisms explaining phenotypic variability in patients are poorly defined. Here we characterized a novel compound heterozygous mutation in DOCK8 in a patient diagnosed with primary combined immunodeficiency which was not typical of classical DOCK8 deficiency. In contrast to previously identified mutations in DOCK8 which result in complete loss of function, the newly identified single nucleotide insertion results in expression of a truncated DOCK8 protein. Functional evaluation of the truncated DOCK8 protein revealed its hypomorphic function. In addition we found somatic reversion of DOCK8 predominantly in T cells. The combination of somatic reversion and hypomorphic DOCK8 function explains the milder and atypical phenotype of the patient and further broadens the spectrum of DOCK8-associated disease.</p

    Reliability and validity of the occupational physical activity questionnaire

    No full text
    Introduction: Few questionnaires have been designed for wide-scale, population-based surveillance of occupational physical activity (PA) behaviors. Purpose: This study was conducted to determine the test-retest reliability and validity of the Occupational Physical Activity Questionnaire (OPAQ) designed to assess the usual weekly duration of occupational sitting or standing, walking, and heavy labor activities. Methods: Analyses were based on a convenience sample of 41 adults (13 men, 28 women) (mean +/- SD, 38.8 +/- 9.9 yr) who worked in a broad range of occupations. Intraclass correlation coefficients (ICC) were used to evaluate the 2-wk test-retest reliability of the OPAQ. Spearman correlations were used to assess criterion (occupational PA record, Actigraph) and construct (cardiorespiratory fitness, percent body fat) related validity. Convergent validity with the current Behavioral Risk Factor Surveillance System (BRFSS) occupational PA question was evaluated with the kappa coefficient. Results: The 2-wk test-retest reliability coefficients for the OPAQ hours per week ranged from an ICC of 0.55 to 0.91. Fair-to-substantial criterion validity was observed for like activities on the OPAQ and a detailed 7-d occupational PA record for sitting or standing (r = 0.37), walking (r = 0.74), and heavy labor activity (r = 0.31). OPAQ walking was related to PA record moderate-intensity PA (r = 0.41), Actigraph occupational light-intensity counts (r = 0.41), and Actigraph total counts (r = 0.44). Associations observed between the OPAQ and submaximal exercise heart rate or percent body fat were low (r = -0.17 to 0.32). Convergent validity displaying the ability of the OPAQ to correctly identify participants who performed mostly sitting or standing, mostly walking, or mostly heavy labor at work was substantial [kappa = 0.71 (95% CI = 0.49, 0.94)]. Conclusions: The test-retest reliability and validity of the OPAQ are similar to other established occupational PA questionnaires. This preliminary study supports the use of the OPAQ in research and surveillance settings. (C)2005The American College of Sports Medicin
    corecore