499 research outputs found

    Impact of Periodic Unsteadiness on Performance and Heat Load in Axial Flow Turbomachines

    Get PDF
    Results of an analytical and experimental investigation, directed at the understanding of the impact of periodic unsteadiness on the time-averaged flows in axial flow turbomachines, are presented. Analysis of available experimental data, from a large-scale rotating rig (LSRR) (low speed rig), shows that in the time-averaged axisymmetric equations the magnitude of the terms representing the effect of periodic unsteadiness (deterministic stresses) are as large or larger than those due to random unsteadiness (turbulence). Numerical experiments, conducted to highlight physical mechanisms associated with the migration of combustor generated hot-streaks in turbine rotors, indicated that the effect can be simulated by accounting for deterministic stress like terms in the time-averaged mass and energy conservation equations. The experimental portion of this program shows that the aerodynamic loss for the second stator in a 1-1/2 stage turbine are influenced by the axial spacing between the second stator leading edge and the rotor trailing edge. However, the axial spacing has little impact on the heat transfer coefficient. These performance changes are believed to be associated with the change in deterministic stress at the inlet to the second stator. Data were also acquired to quantify the impact of indexing the first stator relative to the second stator. For the range of parameters examined, this effect was found to be of the same order as the effect of axial spacing

    The Diversity of High- and Intermediate-Velocity Clouds: Complex C versus IV Arch

    Get PDF
    We present Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (STIS) observations of interstellar ultraviolet absorption lines in the Galactic high-velocity cloud Complex C and the Intermediate Velocity Arch (IV Arch) in direction of the quasar PG 1259+593 (l=120,b=+58 deg). Absorption lines from CII, NI, NII, OI, AlII, SiII, PII, SII, ArI, FeII, and FeIII are used to study the atomic abundances in these two halo clouds at V_LSR=-130 km/s (Complex C) and V_LSR=-55 km/s (IV Arch). The OI/HI ratio provides the best measure of the overall metallicity in the diffuse interstellar medium, because ionization effects do not alter the ratio, and oxygen is at most only lightly depleted from the gas into dust grains. For Complex C, we find an oxygen abundance of 0.093 (+0.125, -0.047) solar, consistent with the idea that Complex C represents the infall of low metallicity gas onto the Milky Way. In contrast, the oxygen abundance in the IV Arch is 0.98 (+1.21,-0.46) solar, which indicates a Galactic origin. We report the detection of an intermediate- velocity absorption component at +60 km/s that is not seen in HI 21cm emission. The clouds along the PG 1259+593 sight line have a variety of properties, proving that multiple processes are responsible for the creation and circulation of intermediate- and high-velocity gas in the Milky Way halo.Comment: 12 pages, 3 tables, 3 figures; accepted for publication in Ap

    Highly Ionized High Velocity Clouds: Intergalactic Gas in the Local Group or Distant Gas in the Galactic Halo?

    Get PDF
    We have recently identified several high velocity (V < -100 km/s) clouds in the directions of Mrk 509 and PKS 2155-304 that have unusual ionization properties. The clouds exhibit strong C IV absorption with little or no detectable low ion (C II, Si II) absorption or H I 21cm emission. As the closest known analog to the outer diffuse halos of damped Ly-alpha absorbers and the low H I column density metal line absorption systems seen in the spectra of high redshift quasars, these "C IV-HVCs" present unique opportunities for relating the conditions within the Milky Way halo and nearby intergalactic gas to the properties of galactic halos at higher redshift. The C IV-HVCs have ionization properties consistent with photoionization by extragalactic background radiation, though some contribution by collisional ionization within a hot plasma cannot be ruled out. The clouds are probably low density [n(H) ~ 10^-4 cm^-3], large [greater than several kiloparsecs], and mostly ionized [n(HI)/n(H) ~ 10^-3] regions located well beyond the neutral gas layer of the Galaxy. The presence of weak H I-HVCs detected through 21cm emission near both sight lines indicates that the C IV-HVCs trace the extended, ionized, low density regions of the H I-HVCs. Several lines of evidence, including very low thermal pressures (P/k ~ 2 cm^-3 K), favor a location for the C IV-HVCs in the Local Group or very distant Galactic halo.Comment: AASTEX manuscript and tables, 55 pages, 8 postscript figures. Astrophysical Journal, in pres

    What is the Total Deuterium Abundance in the Local Galactic Disk?

    Get PDF
    Analyses of spectra obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, together with spectra from the Copernicus and IMAPS instruments, reveal an unexplained very wide range in the observed deuterium/hydrogen (D/H) ratios for interstellar gas in the Galactic disk beyond the Local Bubble. We argue that spatial variations in the depletion of deuterium onto dust grains can explain these local variations in the observed gas-phase D/H ratios. We present a variable deuterium depletion model that naturally explains the constant measured values of D/H inside the Local Bubble, the wide range of gas-phase D/H ratios observed in the intermediate regime (log N(H I} = 19.2-20.7), and the low gas-phase D/H ratios observed at larger hydrogen column densities. We consider empirical tests of the deuterium depletion hypothesis: (i) correlations of gas-phase D/H ratios with depletions of the refractory metals iron and silicon, and (ii) correlation with the molecular hydrogen rotational temperature. Both of these tests are consistent with deuterium depletion from the gas phase in cold, not recently shocked, regions of the ISM, and high gas-phase D/H ratios in gas that has been shocked or otherwise heated recently. We argue that the most representative value for the total (gas plus dust) D/H ratio within 1 kpc of the Sun is >=23.1 +/- 2.4 (1 sigma) parts per million (ppm). This ratio constrains Galactic chemical evolution models to have a very small deuterium astration factor, the ratio of primordial to total (D/H) ratio in the local region of the Galactic disk, which we estimate to be f_d <= 1.19 +/-0.16 (1 sigma) or <= 1.12 +/- 0.14 (1 sigma) depending on the adopted light element nuclear reaction rates.Comment: 19 pages, 9 figure

    A FUSE Survey of Interstellar Molecular Hydrogen in the Small and Large Magellanic Clouds

    Get PDF
    We describe a moderate-resolution FUSE survey of H2 along 70 sight lines to the Small and Large Magellanic Clouds, using hot stars as background sources. FUSE spectra of 67% of observed Magellanic Cloud sources (52% of LMC and 92% of SMC) exhibit absorption lines from the H2 Lyman and Werner bands between 912 and 1120 A. Our survey is sensitive to N(H2) >= 10^14 cm^-2; the highest column densities are log N(H2) = 19.9 in the LMC and 20.6 in the SMC. We find reduced H2 abundances in the Magellanic Clouds relative to the Milky Way, with average molecular fractions = 0.010 (+0.005, -0.002) for the SMC and = 0.012 (+0.006, -0.003) for the LMC, compared with = 0.095 for the Galactic disk over a similar range of reddening. The dominant uncertainty in this measurement results from the systematic differences between 21 cm radio emission and Lya in pencil-beam sight lines as measures of N(HI). These results imply that the diffuse H2 masses of the LMC and SMC are 8 x 10^6 Msun and 2 x 10^6 Msun, respectively, 2% and 0.5% of the H I masses derived from 21 cm emission measurements. The LMC and SMC abundance patterns can be reproduced in ensembles of model clouds with a reduced H2 formation rate coefficient, R ~ 3 x 10^-18 cm^3 s^-1, and incident radiation fields ranging from 10 - 100 times the Galactic mean value. We find that these high-radiation, low-formation-rate models can also explain the enhanced N(4)/N(2) and N(5)/N(3) rotational excitation ratios in the Clouds. We use H2 column densities in low rotational states (J = 0 and 1) to derive a mean kinetic and/or rotational temperature = 82 +/- 21 K for clouds with N(H2) >= 10^16 cm^-2, similar to Galactic gas. We discuss the implications of this work for theories of star formation in low-metallicity environments. [Abstract abridged]Comment: 30 pages emulateapj, 14 figures (7 color), 7 tables, accepted for publication in the Astrophysical Journal, figures 11 and 12 compressed at slight loss of quality, see http://casa.colorado.edu/~tumlinso/h2/ for full version

    Molecular Hydrogen in the FUSE Translucent Lines of Sight: The Full Sample

    Full text link
    We report total abundances and related parameters for the full sample of the FUSE survey of molecular hydrogen in 38 translucent lines of sight. New results are presented for the "second half" of the survey involving 15 lines of sight to supplement data for the first 23 lines of sight already published. We assess the correlations between molecular hydrogen and various extinction parameters in the full sample, which covers a broader range of conditions than the initial sample. In particular, we are now able to confirm that many, but not all, lines of sight with shallow far-UV extinction curves and large values of the total-to-selective extinction ratio, RVR_V = AVA_V / E(BV)E(B-V) -- characteristic of larger than average dust grains -- are associated with particularly low hydrogen molecular fractions (fH2f_{\rm H2}). In the lines of sight with large RVR_V, there is in fact a wide range in molecular fractions, despite the expectation that the larger grains should lead to less H2_2 formation. However, we see specific evidence that the molecular fractions in this sub-sample are inversely related to the estimated strength of the UV radiation field and thus the latter factor is more important in this regime. We have provided an update to previous values of the gas-to-dust ratio, NN(Htot_{\rm tot})/E(BV)E(B-V), based on direct measurements of NN(H2_2) and NN(H I). Although our value is nearly identical to that found with Copernicus data, it extends the relationship by a factor of 2 in reddening. Finally, as the new lines of sight generally show low to moderate molecular fractions, we still find little evidence for single monolithic "translucent clouds" with fH2f_{\rm H2} \sim 1.Comment: 35 pages, 5 tables, 7 figures, accepted for publication in The Astrophysical Journal Supplements Serie
    corecore