18 research outputs found

    SPIRITS 16tn in NGC 3556: A heavily obscured and low-luminosity supernova at 8.8 Mpc

    Get PDF
    We present the discovery by the SPitzer InfraRed Intensive Transients Survey (SPIRITS) of a likely supernova (SN) in NGC 3556 at only 8.8 Mpc, which, despite its proximity, was not detected by optical searches. A luminous infrared (IR) transient at M[4.5]=−16.7M_{[4.5]} = -16.7 mag (Vega), SPIRITS 16tn is coincident with a dust lane in the inclined, star-forming disk of the host. Using IR, optical, and radio observations, we attempt to determine the nature of this event. We estimate AV≈A_V \approx 8 - 9 mag of extinction, placing it among the three most highly obscured IR-discovered SNe to date. The [4.5] light curve declined at a rate of 0.013 mag day−1^{-1}, and the [3.6]−[4.5][3.6] - [4.5] color grew redder from 0.7 to ≳\gtrsim 1.0 mag by 184.7 days post discovery. Optical/IR spectroscopy shows a red continuum, but no clearly discernible features, preventing a definitive spectroscopic classification. Deep radio observations constrain the radio luminosity of SPIRITS 16tn to Lν≲1024L_{\nu} \lesssim 10^{24} erg s−1^{-1} Hz−1^{-1} between 3 - 15 GHz, excluding many varieties of radio core-collapse SNe. A type Ia SN is ruled out by the observed red IR color, and lack of features normally attributed to Fe-peak elements in the optical and IR spectra. SPIRITS 16tn was fainter at [4.5] than typical stripped-envelope SNe by ≈\approx 1 mag. Comparison of the spectral energy distribution to SNe II suggests SPIRITS 16tn was both highly obscured, and intrinsically dim, possibly akin to the low-luminosity SN 2005cs. We infer the presence of an IR dust echo powered by a peak luminosity of the transient of 5×10405 \times 10^{40} erg s−1<Lpeak<4×1043^{-1} < L_{\mathrm{peak}} < 4\times10^{43} erg s−1^{-1}, consistent with the observed range for SNe II. This discovery illustrates the power of IR surveys to overcome the compounding effects of visible extinction and optically sub-luminous events in completing the inventory of nearby SNe.Comment: 25 pages, 10 figures, submitted to Ap

    The Dynamic Infrared Sky

    Get PDF
    Opening up the dynamic infrared sky for systematic time-domain exploration would yield many scientific advances. Multi-messenger pursuits such as localizing gravitational waves from neutron star mergers and quantifying the nucleosynthetic yields require the infrared. Another multi-messenger endeavor that needs infrared surveyors is the study of the much-awaited supernova in our own Milky Way. Understanding shocks in novae, true rates of supernovae and stellar mergers are some other examples of stellar evolution and high energy physics wherein the answers are buried in the infrared. We discuss some of the challenges in the infrared and pathfinders to overcome them. We conclude with recommendations on both infrared discovery engines and infrared follow-up machines that would enable this field to flourish in the next decade.Comment: Astro2020 Science White Paper for Decadal Surve

    The Fast, Luminous Ultraviolet Transient AT2018cow: Extreme Supernova, or Disruption of a Star by an Intermediate-Mass Black Hole?

    Get PDF
    Wide-field optical surveys have begun to uncover large samples of fast (t_(rise) ≲ 5 d), luminous (M_(peak) 10 days. The spectrum remains extremely hot throughout its evolution, and the photospheric radius contracts with time (receding below R < 10^(14) cm after 1 month). This behaviour does not match that of any known supernova, although a relativistic jet within a fallback supernova could explain some of the observed features. Alternatively, the transient could originate from the disruption of a star by an intermediate-mass black hole, although this would require long-lasting emission of highly super-Eddington thermal radiation. In either case, AT 2018cow suggests that the population of fast luminous transients represents a new class of astrophysical event. Intensive follow-up of this event in its late phases, and of any future events found at comparable distance, will be essential to better constrain their origins

    ZTF 18aaqeasu (SN 2018byg): A Massive Helium-shell Double Detonation on a Sub-Chandrasekhar Mass White Dwarf

    Get PDF
    The detonation of a helium shell on a white dwarf has been proposed as a possible explosion triggering mechanism for Type Ia supernovae. Here, we report ZTF 18aaqeasu (SN 2018byg/ATLAS 18pqq), a peculiar Type I supernova, consistent with being a helium-shell double-detonation. With a rise time of ≈18\approx 18 days from explosion, the transient reached a peak absolute magnitude of MR≈−18.2M_R \approx -18.2 mag, exhibiting a light curve akin to sub-luminous SN 1991bg-like Type Ia supernovae, albeit with an unusually steep increase in brightness within a week from explosion. Spectra taken near peak light exhibit prominent Si absorption features together with an unusually red color (g−r≈2g-r \approx 2 mag) arising from nearly complete line blanketing of flux blue-wards of 5000 \AA. This behavior is unlike any previously observed thermonuclear transient. Nebular phase spectra taken at and after ≈30\approx 30 days from peak light reveal evidence of a thermonuclear detonation event dominated by Fe-group nucleosynthesis. We show that the peculiar properties of ZTF 18aaqeasu are consistent with the detonation of a massive (≈0.15\approx 0.15 M⊙_\odot) helium shell on a sub-Chandrasekhar mass (≈0.75\approx 0.75 M⊙_\odot) white dwarf after including mixing of ≈0.2\approx 0.2 M⊙_\odot of material in the outer ejecta. These observations provide evidence of a likely rare class of thermonuclear supernovae arising from detonations of massive helium shells.Comment: 10 pages, 6 figures. Submitted to ApJ

    The Dynamic Infrared Sky

    Get PDF
    Opening up the dynamic infrared sky for systematic time-domain exploration would yield many scientific advances. Multi-messenger pursuits such as localizing gravitational waves from neutron star mergers and quantifying the nucleosynthetic yields require the infrared. Another multi-messenger endeavor that needs infrared surveyors is the study of the much-awaited supernova in our own Milky Way. Understanding shocks in novae, true rates of supernovae and stellar mergers are some other examples of stellar evolution and high energy physics wherein the answers are buried in the infrared. We discuss some of the challenges in the infrared and pathfinders to overcome them. We conclude with recommendations on both infrared discovery engines and infrared follow-up machines that would enable this field to flourish in the next decade

    The Fast, Luminous Ultraviolet Transient AT2018cow: Extreme Supernova, or Disruption of a Star by an Intermediate-Mass Black Hole?

    Get PDF
    Wide-field optical surveys have begun to uncover large samples of fast (t_(rise) ≲ 5 d), luminous (M_(peak) 10 days. The spectrum remains extremely hot throughout its evolution, and the photospheric radius contracts with time (receding below R < 10^(14) cm after 1 month). This behaviour does not match that of any known supernova, although a relativistic jet within a fallback supernova could explain some of the observed features. Alternatively, the transient could originate from the disruption of a star by an intermediate-mass black hole, although this would require long-lasting emission of highly super-Eddington thermal radiation. In either case, AT 2018cow suggests that the population of fast luminous transients represents a new class of astrophysical event. Intensive follow-up of this event in its late phases, and of any future events found at comparable distance, will be essential to better constrain their origins

    ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample

    Get PDF
    Early-time observations of Type Ia supernovae (SNe Ia) are essential to constrain the properties of their progenitors. In this paper, we present high-quality light curves of 127 SNe Ia discovered by the Zwicky Transient Facility (ZTF) in 2018. We describe our method to perform forced point-spread function photometry, which can be applied to other types of extragalactic transients. With a planned cadence of six observations per night (three g + three r), all of the 127 SNe Ia are detected in both g and r bands more than 10 days (in the rest frame) prior to the epoch of g-band maximum light. The redshifts of these objects range from z = 0.0181 to 0.165; the median redshift is 0.074. Among the 127 SNe, 50 are detected at least 14 days prior to maximum light (in the rest frame), with a subset of nine objects being detected more than 17 days before g-band peak. This is the largest sample of young SNe Ia collected to date; it can be used to study the shape and color evolution of the rising light curves in unprecedented detail. We discuss six peculiar events in this sample: one 02cx-like event ZTF18abclfee (SN 2018crl), one Ia-CSM SN ZTF18aaykjei (SN 2018cxk), and four objects with possible super-Chandrasekhar mass progenitors: ZTF18abhpgje (SN 2018eul), ZTF18abdpvnd (SN 2018dvf), ZTF18aawpcel (SN 2018cir), and ZTF18abddmrf (SN 2018dsx). © 2019. The American Astronomical Society

    Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient

    Get PDF
    We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.4 ± 0.1 mag hr-1) and luminous (Mg,peak = -20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity (Lbol ≳ 3 × 1044 erg s-1), the short rise time (trise = 3 days in g band), and the blue colors at peak (g-r ∼ -0.4) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (Teff ≳ 40,000 K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (Mg ∼ Mr ≈ mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E γ,iso \u3c 4.9 × 10 48 erg, a limit on X-ray emission LX \u3c 1040 erg s-1, and a limit on radio emission ν Lν ≲ 1037 erg s-1. Taken together, we find that the early (\u3c 10 days) data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M⊙) at large radii (3 × 1014 cm) that was ejected in eruptive pre-explosion mass-loss episodes. The late-time (\u3e 10 days) light curve requires an additional energy source, which could be the radioactive decay of Ni-56

    A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion

    Get PDF
    Spectroscopic detection of narrow emission lines traces the presence of circumstellar mass distributions around massive stars exploding as core-collapse supernovae. Transient emission lines disappearing shortly after the supernova explosion suggest that the material spatial extent is compact and implies an increased mass loss shortly prior to explosion. Here, we present a systematic survey for such transient emission lines (Flash Spectroscopy) among Type II supernovae detected in the first year of the Zwicky Transient Facility survey. We find that at least six out of ten events for which a spectrum was obtained within two days of the estimated explosion time show evidence for such transient flash lines. Our measured flash event fraction (&gt;30% at 95% confidence level) indicates that elevated mass loss is a common process occurring in massive stars that are about to explode as supernovae
    corecore