13 research outputs found

    Allogeneic stem cell transplantation for patients with advanced rhabdomyosarcoma: A retrospective assessment

    Get PDF
    BACKGROUND: Allogeneic haematopoietic stem cell transplantation (allo-SCT) may provide donor cytotoxic T cell-/NK cell-mediated disease control in patients with rhabdomyosarcoma (RMS). However, little is known about the prevalence of graft-vs-RMS effects and only a few case experiences have been reported. METHODS: We evaluated allo-SCT outcomes of 30 European Group for Blood and Marrow Transplantation (EBMT)-registered patients with advanced RMS regarding toxicity, progression-free survival (PFS) and overall survival (OS) after allo-SCT. Twenty patients were conditioned with reduced intensity and ten with high-dose chemotherapy. Twenty-three patients were transplanted with HLA-matched and seven with HLA-mismatched grafts. Three patients additionally received donor lymphocyte infusions (DLIs). Median follow-up was 9 months. RESULTS: Three-year OS was 20% (s.e.±8%) with a median survival time of 12 months. Cumulative risk of progression was 67% (s.e.±10%) and 11% (s.e.±6%) for death of complications. Thirteen patients developed acute graft-vs-host disease (GvHD) and five developed chronic GvHD. Eighteen patients died of disease and four of complications. Eight patients survived in complete remission (CR) (median: 44 months). No patients with residual disease before allo-SCT were converted to CR. CONCLUSION: The use of allo-SCT in patients with advanced RMS is currently experimental. In a subset of patients, it may constitute a valuable approach for consolidating CR, but this needs to be validated in prospective trials

    Von der Naturwissenschaft zum Patienten - ein Klinischer Exkurs in der Vorklinik (KlinEx)

    No full text

    Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR.

    No full text
    Anti-CD19 chimeric antigen receptor (CAR) T cells showed significant antileukemic activity in B-precursor acute lymphoblastic leukemia (ALL). Allogeneic, HLA-mismatched off-the-shelf third-party donors may offer ideal fitness of the effector cells, but carry the risk of graft-versus-host disease. Knockout (KO) of the endogenous T-cell receptor (TCR) in CD19-CAR-T cells may be a promising solution. Here, we induced a CRISPR/Cas9-mediated KO of the TCR chain in combination with a second-generation retroviral CAR transduction including a 4-1BB costimulatory domain in primary T cells. This tandem engineering led to a highly functional population of TCR-KO-CAR-T cells with strong activation (CD25, interferon gamma), proliferation, and specific killing upon CD19 target recognition. TCR-KO-CART cells had a balanced phenotype of central memory and effector memory T cells. KO of the endogenous TCR in T cells strongly ablated alloreactivity in comparison with TCR-expressing T cells. In a patient-derived xenograft model of childhood ALL TCR-KO-CAR-T cells clearly controlled CD19(+) leukemia burden and improved survival in vivo. However, coexpression of endogenous TCR plus CAR led to superior persistence of T cells and significantly prolonged leukemia control in vivo, confirmed by a second in vivo model using the leukemia cell line NALM6. These results point toward an essential role of the endogenous TCR for longevity of the response at the price of alloreactivity. In conclusion, anti-CD19 CAR T cells with a CRISPR/Cas9-mediated TCR-KO are promising candidates for nonmatched thirdparty adoptive T-cell transfer with high antileukemic functionality in the absence of alloreactivity, but long-term persistence in vivo is better in the presence of the endogenous TCR

    Systematic identification of cancer-specific MHC-binding peptides with RAVEN

    Get PDF
    Immunotherapy can revolutionize anti-cancer therapy if specific targets are available. Immunogenic peptides encoded by cancer-specific genes (CSGs) may enable targeted immunotherapy, even of oligo-mutated cancers, which lack neo-antigens generated by protein-coding missense mutations. Here, we describe an algorithm and user-friendly software named RAVEN (Rich Analysis of Variable gene Expressions in Numerous tissues) that automatizes the systematic and fast identification of CSG-encoded peptides highly affine to Major Histocompatibility Complexes (MHC) starting from transcriptome data. We applied RAVEN to a dataset assembled from 2,678 simultaneously normalized gene expression microarrays comprising 50 tumor entities, with a focus on oligo-mutated pediatric cancers, and 71 normal tissue types. RAVEN performed a transcriptome-wide scan in each cancer entity for gender-specific CSGs, and identified several established CSGs, but also many novel candidates potentially suitable for targeting multiple cancer types. The specific expression of the most promising CSGs was validated in cancer cell lines and in a comprehensive tissue-microarray. Subsequently, RAVEN identified likely immunogenic CSG-encoded peptides by predicting their affinity to MHCs and excluded sequence identity to abundantly expressed proteins by interrogating the UniProt protein-database. The predicted affinity of selected peptides was validated in T2-cell peptide-binding assays in which many showed binding-kinetics like a very immunogenic influenza control peptide. Collectively, we provide an exquisitely curated catalogue of cancer-specific and highly MHC-affine peptides across 50 cancer types, and a freely available software (https://github.com/JSGerke/RAVENsoftware) to easily apply our algorithm to any gene expression dataset. We anticipate that our peptide libraries and software constitute a rich resource to advance anti-cancer immunotherapy
    corecore