186 research outputs found

    Application of remote sensing in estimating evapotranspiration in the Platte river basin

    Get PDF
    A 'resistance model' and a mass transport model for estimating evapotranspiration (ET) were tested on large fields of naturally subirrigated alfalfa. Both models make use of crop canopy temperature data. Temperature data were obtained with an IR thermometer and with leaf thermocouples. A Bowen ratio-energy balance (BREB) model, adjusted to account for underestimation of ET during periods of strong sensible heat advection, was used as the standard against which the resistance and mass transport models were compared. Daily estimates by the resistance model were within 10% of estimates made by the BREB model. Daily estimates by the mass transport model did not agree quite as well. Performance was good on clear and cloudy days and also during periods of non-advection and strong advection of sensible heat. The performance of the mass transport and resistance models was less satisfactory for estimation of fluxes of latent heat for short term periods. Both models tended to overestimate at low LE fluxes

    Long term measurement network for FIFE

    Get PDF
    The objectives were: to obtain selected instruments which were not standard equipment on the Portable Automated Mesometeorological (PAM) and Data Control Platform (DCP) stations; to assist in incorporation of these instruments onto the PAM and DCP stations; to help provide routine maintenance of the instruments; to conduct periodic instrument calibrations; and to repair or replace malfunctioning instruments when possible. All of the objectives were or will be met soon. All instruments and the necessary instrument stands were purchased or made and were available for inclusion on the PAM and DCP stations before the beginning of the IFC-1. Due to problems beyond control, the DCP stations experienced considerable difficulty in becoming operational. To fill some of the gaps caused by the DCP problems, Campbell CR21-X data loggers were installed and the data collected on cassette tapes. Periodic checks of all instruments were made, to maintain data quality, to make necessary adjustments in certain instruments, to replace malfunctioning instruments, and to provide instrument calibration. All instruments will be calibrated before the beginning of the 1988 growing season as soon as the weather permits access to all stations and provides conditions that are not too harsh to work in for extended periods of time

    Evaluation of AIS Data for Agronomic and Rangeland Vegetation: Preliminary Results for August 1984 Flight over Nebraska Sandhills Agricultural Laboratory

    Get PDF
    Since 1978 scientists from the Center for Agricultural Meteorology and Climatology at the University of Nebraska have been conducting research at the Sandhills Agricultural Laboratory on the effects of water stress on crop growth, development and yield using remote sensing techniques. We have been working to develop techniques, both remote and ground-based, to monitor water stress, phenological development, leaf area, phytomass production and grain yields of corn, soybeans and sorghum. Because of the sandy soils and relatively low rainfall at the site it is an excellent location to study water stress without the necessity of installing expensive rainout shelters. The primary objectives of research with the airborne imaging spectrometer (AIS) data collected during an August 1984 flight over the Sandhills Agricultural Laboratory are to evaluate the potential of using AIS to: (1) discriminate crop type; (2) to detect subtle architectural differences that exist among different cultivars or hybrids of agronomic crops; (3) to detect and quantify, if possible, the level of water stress imposed on the crops; and (4) to evaluate leaf area and biomass differences for different crops

    Calibration of field reference panel and radiometers used in FIFE 1989

    Get PDF
    Remote sensing of the earth's surface features involves the measurement of reflected solar radiation and the interpretation of the data in biophysical terms. Reflected radiation is a function of the surface properties and incident solar irradiance. The amount of radiation reflected from a surface is compared to the amount of solar radiation received at the surface as a means of comparing information from different times of day as well as for different days of the year. Thus, it is imperative to calibrate the instruments used to measure the incoming and reflected radiation

    Measurement of surface physical properties and radiation balance for KUREX-91 study

    Get PDF
    Biophysical properties and radiation balance components were measured at the Streletskaya Steppe Reserve of the Russian Republic in July 1991. Steppe vegetation parameters characterized include leaf area index (LAI), leaf angle distribution, mean tilt angle, canopy height, leaf spectral properties, leaf water potential, fraction of absorbed photosynthetically active radiation (APAR), and incoming and outgoing shortwave and longwave radiation. Research results, biophysical parameters, radiation balance estimates, and sun-view geometry effects on estimating APAR are discussed. Incoming and outgoing radiation streams are estimated using bidirectional spectral reflectances and bidirectional thermal emittances. Good agreement between measured and modeled estimates of the radiation balance were obtained

    Turbulent Exchange Coefficients for Sensible Heat and Water Vapor under Advective Conditions

    Get PDF
    Results are presented of micrometeorological measurements made over alfalfa and soybeans under conditions of sensible heat advection at Mead, Neb. The sensible heat advection phenomenon reported here is of a regional rather than a local nature. The exchange coefficient for sensible heat (Kh) is found to be generally greater than the exchange coefficient for water vapor (Kw). This result contradicts the usaul assumption of equality of Kh and Kw under nonadvection (lapse or unstable) conditions when the net transfer of both sensible heat and water vapor are away from the earth\u27s surface. Under advective conditions, however, heat and water vapor are transferred in opposite directions. Our results are supported by Warkaft\u27s (1976) recently published theoretical analysis in which he concludes that the greatest departure of Kh/Kw from unity will occur when temperature an humidity gradients are of opposite sign

    Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site

    Get PDF
    Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study

    Biophysical characterization and surface radiation balance

    Get PDF
    The Kursk 1991 Experiment (KUREX-91) was conducted as one of a suite of international studies to develop capabilities to monitor global change. The studies were designed specifically to understand the earth's land-surface vegetation and atmospheric boundary layer interaction. An intensive field campaign was conducted at a site near Kursk, Russia during the month of July in 1991 by a team of international scientists to aid in the understanding of land-surface-atmosphere interactions in an agricultural/grassland setting. We were one of several teams of scientists participating at KUREX-91 at the Streletskaya Steppe Researve near Kursk, Russia. The main goals of our research were to: (1) characterize biophysical properties of the prairie vegetation; and (2) to characterize radiation regime through measurements and from estimates derived from canopy bidirectional reflectance data. Four objectives were defined to achieve these goals: (1) determine dependence of leaf optical properties on leaf water potential of some dominant species in discrete wavebands in the visible, near-infrared, and mid-infrared (spanning 0.4-2.3 microns range); (2) characterize the effective leaf area index (LAI) and leaf angle distribution of prairie vegetation; (3) characterize the radiation regime of the prairie vegetation through measures of the radiation balance components; and (4) examine, develop, and test methods for estimating albedo, APAR, and LAI from canopy bidirectional reflectance data. Papers which were the result of the research efforts are included
    • …
    corecore