University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

School of Natural Resources: Documents and Reviews

Natural Resources, School of

1991

Slope Effects on Shortwave Radiation Components and Net Radiation: Interim Report for Period April 1, 1991- December 31, 1991

E. A. Walter-Shea University of Nebraska - Lincoln

B. L. Blad University of Nebraska - Lincoln

C. J. Hays University of Nebraska - Lincoln

M. A. Mesarch University of Nebraska - Lincoln

Follow this and additional works at: https://digitalcommons.unl.edu/snrdocrev

Part of the Biodiversity Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons, Terrestrial and Aquatic Ecology Commons, and the Water Resource Management Commons

Walter-Shea, E. A.; Blad, B. L.; Hays, C. J.; and Mesarch, M. A., "Slope Effects on Shortwave Radiation Components and Net Radiation: Interim Report for Period April 1, 1991- December 31, 1991" (1991). *School of Natural Resources: Documents and Reviews*. 18. https://digitalcommons.unl.edu/snrdocrev/18

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in School of Natural Resources: Documents and Reviews by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Slope Effects on Shortwave Radiation Components and Net Radiation

Interim Report for Period April 1, 1991 - December 31, 1991

NASA Grant NAG5-894

by

Elizabeth A. Walter-Shea, Blaine L. Blad, Cynthia J. Hays and Mark A. Mesarch

Department of Agricultural Meteorology Institute of Agriculture and Natural resources University of Nebraska-Lincoln Lincoln, Nebraska 68583-0728

> AgMet Progress Report 92-1 January 1992

INTRODUCTION

The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as "the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions." The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1987-89 to accomplish this objective. Four intensive field campaigns (IFCs) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used to quantify surface processes. Analysis since our last report (Walter-Shea et al., 1991) has focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989.

MATERIALS AND METHODS

Instrumentation and Experimental Site

A Barnes Modular Multiband Radiometer (MMR) 12-1000, Radiation Energy Balance Systems (REBS) single dome net radiometers and Eppley Precision Spectral Pyranometers (PSPs) were used to collect incoming and reflected radiation over 15 prairie vegetative plots and one bare soil plot at FIFE experimental Site 966 (2437-BBS) in 1989. Plots were selected from hill tops (horizontal surfaces) and from slopes with aspects aligned in the four cardinal directions and in close proximity to each other.

The MMR collects spectral data in eight wavebands ranging from the visible to the thermal infrared. The MMR, set with 15° field of view, was mounted on a portable, inclinable mast three meters above the soil surface producing a target spot size of 0.8m at nadir. The MMR was calibrated in 1989 by Dr. Brian Markham at NASA/Goddard Space Flight Center in Greenbelt, Maryland according to the method of Markham et al. (1988). Bidirectional reflected radiation was measured at seven to eight view zenith angles in the

plane parallel to the slope aspect at nadir, 20°, 35° and 50° on either side of nadir and normal to the plot (if it varied from the other viewing directions).

Nadir-viewed MMR data were collected over a horizontally-mounted, calibrated Labsphere halon reference panel (Labsphere Inc., P.O. Box 70, North Sutton, NH 03260) to estimate incident radiation in each MMR wave band. The panel was calibrated using the Department of Agricultural Meteorology's field-reference panel calibration goniometer (Walter-Shea et al., 1992) following the field calibration method of Jackson et al. (1987). This method corrects panel reflected radiation data for the panel's non-Lambertian properties. Incoming radiation values were estimated from the panel reflected radiation data using MMR calibration coefficients provided by B. Markham to yield units of spectral radiance (W m² sr⁻¹ μ m⁻¹).

A portable A-frame was mounted with: (1) one upright Eppley PSP to measure incoming shortwave radiation on a horizontal surface; (2) two inverted Eppley PSPs to measure reflected shortwave radiation component measurements (one horizontally-mounted, the other mounted parallel to the slope); and (3) two net radiometers to measure net radiation (one horizontally-mounted, the other mounted parallel to the slope). The inclined PSP and net radiometer were adjusted at each plot to the appropriate angle representing the plot slope aspect.

A limited number of MMR and A-frame measurements were made due to terrain roughness and equipment restrictions. Approximately two hours were required to complete an entire run (multidirectional measurements over all plots on all slopes) so that large changes in solar zenith angle resulted during a single run. Thus, discussion will be limited to comparisons of radiation measured from instruments horizontally-mounted (nadir) or mounted parallel (normal) to the sloped surface. Comparisons will be used to indicate errors (or lack of error) involved when the effective illumination is not taken into account.

Experimental Procedures

MMR nadir-viewed measurements of the reference panel were taken at the beginning of the measurement run, followed by MMR multi-angle reflected radiation measurements over prairie vegetative and bare-soil plots. Repeated measurements from the A-frame were made in the same plots as the MMR, immediately following bidirectional reflected radiation measurements. Nadir-viewed reflected radiation from the reference panel were periodically measured during the run with a final nadir-viewed reflected reading completing the sequence of measurements.

Incoming radiation received on a horizontal surface was corrected to represent radiation received on an inclined surface. Correction requires the effective (or local) solar zenith angle. The effective solar zenith angle was calculated (from Iqbal, 1983) as:

$$\cos\theta_{e} = \cos\beta\cos\theta_{e} + \sin\beta\sin\theta_{e}\cos(\psi - \gamma)$$
[1]

where:

β = slope of surface (measured from the horizontal)
 γ = surface azimuth angle (ranging in value from 0 to ±180 with east = +90 and west = -90)
 θ_e = effective solar zenith angle
 ψ = solar azimuth
 θ_e = solar zenith angle arccos (sinδsinφ + cosδcosφcosω)
 ω = hour angle
 φ = geographic latitude

 δ = declination angle

Incoming radiation values (from the upright PSP and MMR nadir-viewed reflected radiation from the field-reference panel) were cosine corrected to account for incident radiation received at the sloped surface (values multiplied by the ratio of the cosine of the effective solar zenith angle (θ_e) and the cosine of the solar zenith angle (θ_e), i.e., $\cos\theta_e/\cos\theta_e$). Nie and Kanemasu (1989) corrected the direct beam component. Total incoming radiation was cosine corrected in our study.

RESULTS AND DISCUSSION

Variation in actual and effective solar zenith angles. The effective solar zenith angles of four of the fifteen vegetative plots (one from each slope) at Site 966 observed during the measurement period are given in Table 1. Table 1 provides an example of the variation in effective solar zenith angles possible for sloped surfaces at the FIFE site. Inclination angles of these four plots ranged from 12 to 18° from the horizontal. For the relatively gentle slopes and limited times of measurement at site 966, the greatest difference observed between the actual solar zenith angle and the effective solar zenith angle was approximately $\pm 18^{\circ}$ (resulting in a correction of 1.3 and 0.62 times the measured value). Both situations (i.e., corrections which increase and decrease the horizontal surface irradiance value to simulate that irradiance received on an inclined surface) occurred on the east-facing slope.

Field-reference panel cosine correction test. A simple test was conducted to estimate the error involved in using the cosine correction method to estimate irradiance on a sloped surface. MMR reflected radiation data from a Labsphere Spectralon field-reference panel collected using the field-panel calibration goniometer (Walter-Shea et al., 1992) was used in the test. The goniometer permits the inclination of field-reference panels at 10° increments, to effectively illuminate panels at 15 to 75° illumination angles in a short period of time. The calibration requires panels be measured at various inclination as well as in a horizontal position. Thus, the horizontal measurement simulates the reference data measured at site 966 while the inclined panel values give an indication of values expected at all possible illumination angles on sloped surfaces. The data were collected under three different diffuse sky conditions. Nadir-viewed MMR data measured from a horizontallymounted field-reference panel were cosine corrected to represent irradiance received on a sloped surface. These corrected values were compared to values from inclined panels effectively illuminated at various angles. The method was tested for all seven MMR optical

wave bands (Table 2). The cosine corrected values on the average overestimated the actual inclined measured reflected values. However, the largest relative error of 0.5% was in the blue portion of the spectrum (wave band 1) with the lowest relative error of 0.03% in the mid-IR region (wave band 7).

Slope Effect on Bidirectional Spectral Radiance. Nadir-viewed reflected radiation values generally are used as an estimate of surface albedo. Generally, surfaces are assumed to be Lambertian so that a simple cosine correction is applied to simulate the radiation reflected in the direction normal to the sloped surface. Difference between nadir-viewed reflected radiation and that from a view direction normal to the surface were investigated. MMR reflected radiation collected at nadir was compared to MMR reflected radiation collected at nadir was compared to MMR reflected radiation collected at nadir was compared to MMR reflected radiation surface at the inclined surface (Table 3). The largest difference between nadir-viewed radiances and that measured from a view direction normal to the surface occurred on the north-facing slopes for all seven wave bands with the reflected radiation measured for the surface normal 1-3 W m² sr⁻¹ μ m⁻¹ lower than the nadir-viewed values. Mean relative errors were approximately 4-10%.

<u>Cosine-Correction Effect on Bidirectional Reflectance Factors</u>. Comparisons for all seven MMR optical wave bands were made between reflectance factors calculated using nadir-viewed panel data and reflectance factors calculated using cosine corrected-nadirviewed panel data (Table 4). Reflectance factors are for all view zenith angles. The greatest mean relative errors (approximately 9%) are for those values from the north and west-facing slopes. Although the mean bias error (MBE) and mean relative error (MRE) are low for the east facing slopes, the graphs (Fig. 1) and r² indicate that large differences between the two methods of calculating reflectance factors can result. Differences are attributed to the large difference in actual and effective solar zenith angles (Table 1).

Slope Effect on Reflected and Incoming Shortwave Radiation, Albedo and Net Radiation. Reflected shortwave radiation measured with the two inverted Eppley PSPs over horizontal and inclined surfaces were compared (Table 5). Reflected radiance from the two PSPs over the horizontal surfaces varied, indicating a variation in target surface and instrument performance as well as experimental error. Variation between measured reflected radiation from the sloped plots as measured with the two PSPs (horizontal- and parallel-mounted) is lower than the variation between measured reflected radiation from the horizontal surfaces (hill tops) as measured with the two PSPs (both of which are horizontally-mounted). Therefore, we cannot say that there is a true difference in reflected radiation from inverted horizontally-mounted PSP and the PSP mounted parallel to the surface. Correlation coefficient values were high regardless of surface and instrument inclination. R² were similarly high for MMR directional radiances regardless of the surface inclination (Table 3).

Incoming shortwave radiation (measured on a horizontal surface) was cosine corrected to estimate the irradiance on inclined surfaces. Irradiance received on horizontal surfaces was compared to simulated irradiance received on sloped surfaces. Values differed the least for the south-facing slope (north, east and west facing slopes had high MBE and MRE and/or low R²) (Table 6). As a result, albedo values calculated from reflected and incoming shortwave radiation from horizontally- and parallel-mounted PSPs differed considerably (Table 7 and Fig. 2). North-facing slope corrected values are consistently larger than uncorrected values since the effective solar zenith angle was always larger than the actual solar zenith angle during the measurement period (See Table 1). Only during large solar zenith angles would the effective angle be larger than the actual for the north-facing slope. East and west-facing slope data are "random" in nature since differences in effective and actual solar zenith angles varied during the measurement period. Reflected radiation varied little with sensor orientation (nadir or horizontally oriented as compared to those mounted parallel to the sloped surfaces) (Tables 3 and 5). Irradiance on horizontal and inclined surfaces varied considerably (Table 6) so that calculated values of reflectance and albedo depended on instrument orientation (Tables 4 and 7). Likewise, net radiation differed according to instrument mounting as was reported by Nie and Kanemasu (1989) (Table 8).

Conclusion

Results indicate the need for careful consideration of instrument orientation in characterizing radiation balance components and net radiation of sloped terrain even on the gentle slopes (12 to 18° slopes) of our FIFE study site. Of particular concern is measurement of incident radiation. Albedo and net radiation values measured over vegetation on inclined surfaces varied considerably between values measured from instruments mounted parallel and those mounted in a horizontal position.

References

Iqbal, M. 1983. An Introduction to Solar Radiation. Academic Press, New York. pp. 390.

- Jackson, R. D., M. S. Moran, P. N. Slater and S. F. Biggar. 1987. Field calibration of reference reflectance panel. <u>Remote Sens. Environ.</u> 22:145-158.
- Markham, B.L., Wood, F.M. and Ahmad, S.P. 1988. Radiometric calibration fo the reflective bands of NS001 Thematic Mapper Simulator (TMS) and Modular Multispectral Radiometers (MMR). <u>SPIE Recent Advances in Sensors, Radiometers</u> and Data Processing for Remote Sensing 924:96-108.
- Nie, D. and E. T. Kanemasu. 1989. A comparison of net radiation on slopes. In: <u>Proceedings of the 19th Conf. on Agricultural and Forest Meteorology</u>, Charleston, SC. American Meteorological Society, Boston, MA. pp. 142-143.
- Walter-Shea, E. A., B. L. Blad, C. J. Hays and M. A. Mesarch. 1991. Remotely-sensed estimates of surface radiation balance components, APAR and spectral reflectance, <u>AgMet Progress Report 91-3</u>, Dept. of Agric. Meteorol., Univ. of Nebraska, Lincoln, NE.
- Walter-Shea, E. A., C. J. Hays, M. A. Mesarch, and R. D. Jackson. 1992. An improved goniometer system for calibrating field reference-reflectance panels. (submitted to <u>Remote Sens. Environ.</u>)

SLOPE	DATE	PLOT	ASPECT	AZIMUTH	SOLAR ZENITH $ heta_{ extsf{.}}$	$\begin{bmatrix} EFFECTIVE \\ SOLAR \\ ZENITH \\ \theta_{e} \end{bmatrix}$	DIFFERENCE $\theta_s - \theta_e$	$\frac{\cos \theta_{e}}{\cos \theta_{e}}$
15°	166	2	NORTH	87.1	54.6	55.2	- 0.60	0.985
	166	2	NORTH	199.6	16.5	31.0	- 14.50	0.894
	166	2	NORTH	257.0	37.2	42.8	- 5.60	0.921
	195	2	NORTH	91.4	52,5	54.3	- 1.80	0.959
	195	2	NORTH	113.9	31.9	40.1	- 8.20	0.901
	221	2	NORTH	122.4	35.7	1 45.3	- 9.60) 0.866
	221	2	NORTH	152.9	25.6	39.5	- 13.90	0.856
1 7 °	166	7	SOUTH	91.2	49.6	51.4	- 1.80	0.963
	166	- 7	SOUTH	226.9	21.2	15.5	5.70	1.034
	166	7	SOUTH	262.6	42.6	43.2	- 0.60	0.990
	195	7	SOUTH	93.7	49.7	50.7	- 1.00	0.979
2	221	7	SOUTH	117.5	38.6	33.7	4.90	1.065
	221	7	SOUTH	163.9	24.2	9.1	15.10	1.083
18°	166	10	EAST	97.7	42.3	24.6	17.70	1.229
	166	10	EAST	266.3	46.6	64.6	- 18.00 +	0.624
	195	10	EAST	95.0	48.2	30.3	17.90	1.295
	221	10	EAST	114.6	40.5	25.1	15.40	1.191
	221	10	EAST	169.1	23.8	26.7	- 2.90	0.976
12°	166	14	WEST	102.9	37.3	49.1	(- 11.80 ×	0.978
	166	14	WEST	268.0	48.6	36.6	12:00 ×	
	195	14	WEST	97.3	45.7	57.6	- 11.90	1.214
	221	14	WEST	112.0	42.5	53.8	- 11.90	0.767
	221	14	WEST	180.5	23.5	26.1	- 2.60	0.801 0.979

 Table 1.
 Solar zenith angle and effective solar zenith angle for four plots along north-, south-, east- and west-facing slopes at Site 966 during MMR and A-frame measurements.

17.0 11,4 6.8

6.9

ł

 Table 2.
 Mean relative error associated with estimating irradiance on a inclined surface using irradiance received on the horizontal cosine corrected. Inclined surface irradiance on a field-reference panel was measured with a MMR using the field-panel calibration goniometer.

MMR Wave Band	Mean Relative Error (%)
1	0.55
2	0.29
3	0.15
4	0.25
5	0.17
6	0.08
7	0.03

Comparison of nadir-viewed canopy radiance to radiance measured in the direction normal to the surface for all seven optical MMR wave bands at site 966. (2437-BBS)

Table 3.

÷.,

ſ		z			63	5	45		3	8	54	45		2	63	3	5 4	3 4	2	8	54	45	45
		\mathbb{R}^{2}			0.949	0.935	0.858	0.046	0.750	706.0	0.932	0.884	004K	0+4-5-0	0.968	0.955	2000	1200	TOKIN	0.9/4	0.945	0.946	0.968
		R			0.974	0.967	0.926	0.972	3000	C1C10	0.966	0.940	0073	CLCO	0.984	776.0	0.047	0800		106.0	0.972	0.972	0.984
		NORMAL W/m ² /sr/µm	G	10	3.192	6.299	5.749	6.571	171 2	LLO L	110.1	8.243	8.739		3.772	8.656	7.457	8 146	16 700	001/01	13.552	14.973	14.308
	Radiance	NOR W/m²/	MEAN		13.83/	18.491	18.511	17.473	22.639	27.055	CCU.17	29.064	25.932		929.01	22.803	22.278	21.502	71 548	101 02	00.401	74.171	62.232
t t	Kadi	NADIR W/m²/sr/µm	SD	100	701-2	5.153	5.661	5.181	6.234	6.370		7.920	7.095	1 OCL	CC0.4	7.422	7.391	6.566	17.739	12 100	701-71	14.388	12.161
		NADIR W/m ² /sr/µ	MEAN	15 503	200	17.629	17.770	17.627	24.928	25.926		27.948	26.195	17 510	CTC"/T	21.922	21.533	21.658	74.587	665 SN4		72.238	62.846
		RMSE W/m ² /sr/µm		2.064		2.034	2.293	1.929	2.812	2.624		2.996	2.450	THE C		2.268	2.501	2.125	4.250	3.816		3.962	3.210
		MRE %		-9.745		3.744	3.910	-2.227	-8.521	3.440	22.0	3.661	-2.023	-9.659		2.904	3.119	-2.050	-3.903	2.639	2,20	QT0.7	-1.528
		MBE W/m²/sr/µm		-1.667	0.000	0.862	0.741	-0.154	-2.290	1.129	1116	011.1	- 0.263	-1.893		0.881	0.745	- 0.156	-3.039	1.897	1 033	CC2.1	-0.614
		ASPECT		NORTH		HIUUS	EAST	WEST	NORTH	HILOOS	FACT		WEST	NORTH		HIUOS	EAST	WEST	NORTH	HLINOS	FACT		WEST
		BAND		-					5					ŝ					4				

-

11

s,

Table 3 (continued)

	2											
	₹\$	0.950	0.979	0.855	2.456	0.718	2.499	0.213	-2.826	-0.043	WEST	
	45	0.926	0.962	0.742	2.371	0.723	2.295	0.214	3.030	0.076	I cha	
_	54	0.965	0.983	066.0	7007	0.720				NEO O	FACT	
_	3	10/10		0000	7647	0.000	2.590	0.200	1.328	0.051	HINOS	
	53	0.087	0.993	0.532	1.774	0.637	1.934	0.202	-7.258	-0.160	HIMON	-
_	4	0.900	0.963	004.0	COCTT	OT CHE						r
			0000	3 400	11 565	2.916	11.730	0.776	-2.161	-0.165	WEST	
_	45	0 043	0.971	3.146	12.027	3.007	11.680	0.824	2.656	0.348	EASI	
	54	0.964	0.982	3.491	12.289	3.135	12.031	0.766	1.004	0(7.0		
	63	116.0	0.900	10777	The						L THE LOS	
-			0000	100 0	0641	2.546	10.333	0.851	-6.152	-0.693	NORTH	9
	45	0.966	0.983	7.034	28.279	6.054	28.681	1.590	-1.971	-0.402	WEST	
-	45	0.955	0.977	0./40	760.10	0.4.0	TIINC					
	5 !			3163	31 537	6433	30.771	1.615	2.316	0.761	EAST	
-	54	0 956	0.978	6.558	30.609	5.896	29.937	1.604	1.990	0.672	HIDDE	
-	8	0.976	0.988	0.144	667.07	Reno	CL0.77				103	
F					70,20	205 9	29643	1.719	4.339	-1.344	NORTH	S

 $MBE = N^{-1}\Sigma NORMAL-NADIR$

 $MRE = N^{-1}\Sigma\{(NORMAL-NADIR)/NADIR\}*100$

RMSE = {N⁻¹∑NORMAL-NADIR)**2}**0.5

জ 😤 😡 পোর্জে 🗄 পর ১০০৫৫

ा ः इ

570 270

100

1.044

Comparison of canopy reflectance factors calculated using nadir-viewed panel reflected measurements as estimates of incoming radiation to canopy reflectance factors calculated using cosine corrected nadir-viewed panel reflected measurements as estimates of incoming radiation for all seven MMR optical wave bands at all view zenith angles at Site 966. Table 4.

Г		-		Т	T	Т		-	T	Т	Т		1	Т	1	T	7	-	T		
	;	Z	3		438	<u>9</u>	R R	504	428		R	363	504	120		R	363	504	438	360	
	ç Ç	Å	0 956		0000	0.400	60'N	0.958	0.931	0347		0.722	0.970	0.078	0.510	0TCD	C4/.U	0.960	0.955	0.733	0.599
	ρ	4	0.978	0.021	102.0	700'N	0000	0.979	0.965	0.580	0.050	nco.u	0.985	0%6.0	1120	670 U	c00.0	0.980	0.977	0.483	0.774
ted DE (m)	160 KF (%)	SD	0.919	0.660	1 274	1 240		1.727	0.839	2.085	1010	171.7	1.443	1.383	1 745	1 050	CCC-1	8.142	4.996	8.027	7.190
Cosine correct	UNITIE COLLECTED RF (%)	MEAN	4.200	4.130	4 500	4.871		7.603	6.874	8.072	8 127	70110	5.746	6.192	6.554	LACT	102.00	060.00	31.420	35.520	33.250
(%)	(2)	SD	0.811	0.739	1.319	1.071		1.574	0.924	2.053	1612		1.217	1.492	2.039	- 1.565	0.050	70.0	4.971	7.476	5.353
RF (%)		MEAN	3.842	4.222	4.700	4.468		0.00	7.023	8.405	7.455		5.241	6.333	6.888	6.649	35 402		32.053	36.735	30.575
DMCE	KMSE	02	0.415	0.179	1.069	0.788	0000	00/10	0.289	1.904	1.319		0.599	0.277	1.492	. 1.161	3.532		1.239	7.981	5.278
MRF	MINE	9	9.323	-1.968	-0.862	9:059	0277	7-744	-1.968	-0.863	9.059		9.322	-1.968	-0.863	9.058	9.322		-1.968	-0.863	9.059
MBF	201	2	0.358	-0.092	-0.191	0.403	0.630		-0.149	-0.332	0.676		0.505	-0.141	-0.334	0.527	3.134		-0.633	-1.215	2.675
	ASPECT		NORTH	HLINOS	EAST	WEST	NORTH		HIUOS	EAST	WEST		NORTH	HIUOS	EAST	WEST	NORTH	1	HIUUS	EAST	WEST
	DNAB						2					,	رم ا				4				

13

÷

Table 4 (continued)

L

ą

Ś	NORTH	3.185	9.322	3.611	34.975	6.067	38 160	1000			
	HINOS	-0.727	-1.968	1 412	35 410		001.00	0.592	0.964	0.929	504
					014.00	3./48	34.690	3.594	0.946	0.896	438
	EAST	-1.574	-0.863	8.213	39.146	7.279	37 573	3103	0000		
	WEST	3.019	0.050	EOLI			Circia	C17.0	0.292	0.080	360
		CINC	600%	5.804	34.495	4.888	37.513	7.003	0.695	0.483	363
9	NORTH	1.933	9.322	2.210	20.610	000			2000	004-0	R
					0100-2	746.7	750.77	3.456	0.956	0.915	504
	HIDOS	-0.523	-1.968	1.006	23.971	3.088	23,448	7676	0000	0000	
	EACT	2001	0.000				241122	C10.7	002.0	0.932	438
	Incon	00777-	-0.803	5.343	25.684	5.451	24.478	3 008	0.110	0176	
	WEST	2.030	9.059	4.041	21 LC	100		0	ort	C/ T-N	R
				Tiou	0/1-1-7	3.841	26.206	4.794	0.692	0.479	363
2	NORTH	0.992	9.322	1.140	10.475	1.659	11 467	1 000			
	HILIOS	0.201	1 000	0.500			104-117	766'T	696.0	0.939	504
		TACTA	00X-T-	68C.U	13.877	2.984	13.576	2.780	0 087	1001	420
	EAST	-0.733	-0.863	2.958	12 017	- 100 C			10/10	1/20	007
-					ILVICT	100.0	13.214	2.624	0.656	0.431	360
	WEST	1.152	9.059	2.384	14.202	2.714	15354	3.045	0120	0 6 6	T
							LOCIAT	ctore	0./42	100.0	363

 $MBE = N^{-1}\Sigma RF \alpha - RF$

 $MRE = N^{-1}\Sigma\{(RF\alpha - RF)/RF\}*100$

RMSE = ${N^{1}\Sigma RFcc} - RF + 2} + 0.5$

9 12

Comparison of reflected shortwave radiation measured with an inverted Eppley PSP horizontally-mounted to reflected shortwave radiation measured with an inverted Eppley PSP mounted to the surface at Site 966. (2437-BBS) Table 5.

					Reflected	Reflected Shortwave		4		
ASPECT	MBE w/m ²	MRE %	RMSE w/m ²	Horizont w/	Horizontal Mount w/m ²	Parallel Mount w/m ²	Mount n ²	ĸ	\mathbb{R}^2	z
				MEAN	SD	MEAN	G			
LEVEL	-3.160	-2.209	8.714	128 008	10.704					
				1401.001	17.234	64/.071	18.484	0.905	0.819	8
NORTH	-1.740	-1.226	4.068	130.262	19.418	128 522	18 675	0.001	0.062	;
111103						77/1071	CINOT	102.0	505.0	10
HIUUS	0.456	0.235	4.441	129.913	17.494	130 369	10.014	0.072	5400	Ş
FACT	100.0	0				100000T	LINOT	C12.0	0.947	70
1007	TKN'N	50.0	1.835	140.186	16.381	140 277	16.637	0000	0.007	30
mo-mu						117017	1000T	+442-00	102.0	3
WESI	-2.985	-2.520	6.350	131.148	14.204	128.163	17 304	0.053		76
							100017	0000	00/-0	70

 $MBE = N^{-1}\Sigma(parallel-horizontal)$

MRE = $N^{-1}\Sigma((parallel-horizontal)/horizontal)*100.0$

 $RMSE = \{N^{-1}\Sigma[(parallel-horizontal)^{**2}]\}^{**0.5}$

Comparison of incoming shortwave radiation as measured with an upright, horizontally-mounted Eppley PSP with estimated incident shortwave radiation received on an inclined surface. Estimated values calculated by multiplying total incoming shortwave radiation received on the horizontal with the ratio $\cos\theta_e/\cos\theta_i$. Table 6.

5

	z			30	;	31	5	76	20	3	X	3
	\mathbb{R}^2			000.I	1000	0/2.0	0 000	766.0	0 507	1000	0 793	~~~~~
	R		1 200	nnn-T	0 088	00/.7	966.0		0.773		0.891	
	Mount 1 ²	SD	150 170	071.001	125.304		177.730		182.845		167.732	
hortwave	Parallel Mount w/m ²	MEAN	788 006	27.001	725.321		827.553		856.426		760.965	
Incoming Shortwave	l Mount 1 ²	SD	158 128		159.983		154.567		145.541		158.359	
	Horizontal Mount w/m²	MEAN	788.996		793.416		810.116		823.416		826.961	
	RMSE w/m ²		0.000		79.189		32.250	118.465		100.127		
	MRE %		0.000		-7.942		1.681	0.00	4.0/3	-7.735		
	MBE w/m ²		0.000		-68.095		17.438	22.010	NTN:CC		-63.996	
	ASPECT		LEVEL		HINON		HIUUS	FACT		W.T.C.T.	WEST	

Comparison of hemispherical shortwave albedo from horizontally-mounted PSP and that measured from a PSP mounted parallel to the surface. Table 7.

L

Ċ,

×

Γ				Т		Т	-	Т		Г		Г	
	7	5	_		8	L	31		32		2	Ę	9
	D2	4			0.14		0.893		0.736		190.0		667.0
	x	í		0.11	/1/.0	1.00	C44.0	0.000	0.808	0100	0+7.0	0 547	14000
	Mount	e	70	0.010	CININ	0000	070.0	0.014	+10.0	0.078	220.0	0.018	2
opo	Parallel Mount	MEAN		0.162		0179		0.160		0.169		0.172	
Albedo	l Mount	ß		0.017		0.021		0.011		0.026		0.023	
	Horizontal Mount	MEAN		0.166		0.167		0.162		0.173		0.162	
	RMSE			0.014		0.014		0.008		0.033		0.022	
	MRE	0,		-2.124		7.404		-1.353	1000	C79.0-		6.783	
	MBE		1000	-0.004	0,000	210.0		-0.002	Too o	±00.0-	0000	600.0	
	ASPECT		I EVIEI	LEVEL	Imaon	LINUN	COLTENT V	HIDDE	FACT		WEST	W E-0 I	

λ,

Comparison of net radiation values as measured with a REBS single dome net radiometer mounted horizontally and a REBS single dome net radiometer mounted horizontally and a REBS single dome Table 8.

L

					Net ra	Net radiation				
ASPECT	MBE w/m ²	MRE %	RMSE w/m ²	Horizont w/	Horizontal Mount w/m ²	Parallel Mount w/m ²	Mount m ²	Я	\mathbb{R}^2	z
				MEAN	G	MEAN	ł			
I EVET	100 0				3	MEAN	2D			
	160.8	1.687	20.165	505.167	130.724	513 758	124 007			
NOPTH	EC EDO				Lainna	007.010	100.401	066.0	0.981	30
IIIVIAN	80C.0C-	-10.275	67.141	522.429	130 830	465 000	110 400			
SOLITEH	17 504				ACOVET	776.00+	119.480	0.972	0.944	31
III	170.11	2.899	36.921	511.671	173 177	\$20.100		0000		
FAST	17 600				111000	761.620	142. /0/	U86.U	0960	32
	1/1.000	3.964	97.558	533.166	107 001	220 766	100001			Γ
WEST	10 410				172-777	00/.000	142.303	0.736	0.542	r S
Icert	-13./19	-0.877	65.667	537.261	126.045	523 542	120.200	0 000	0000	ł
	_						140.477	0.000	VC/.U	१

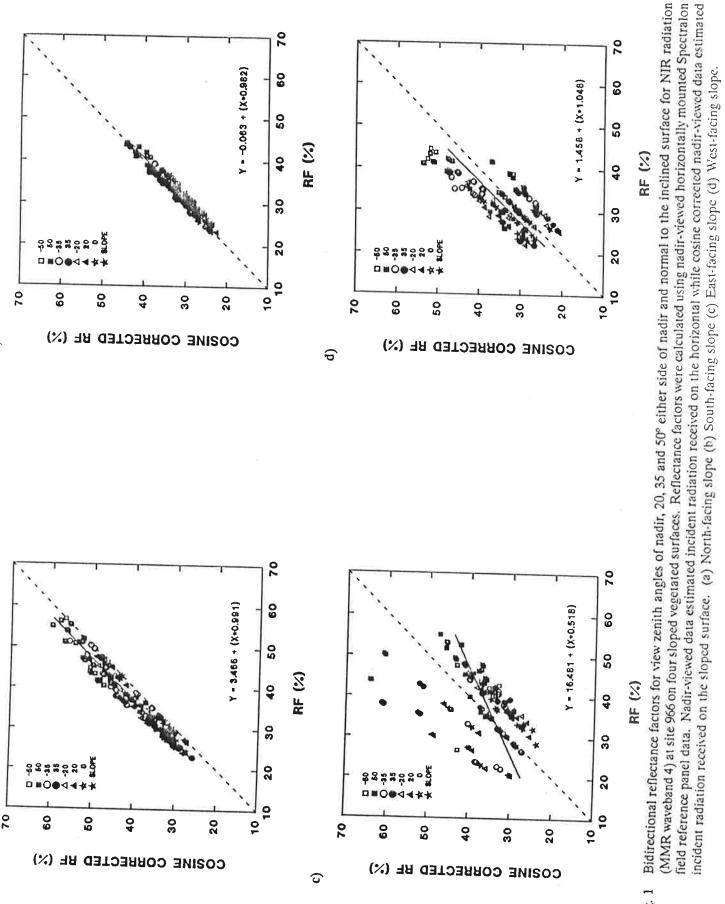
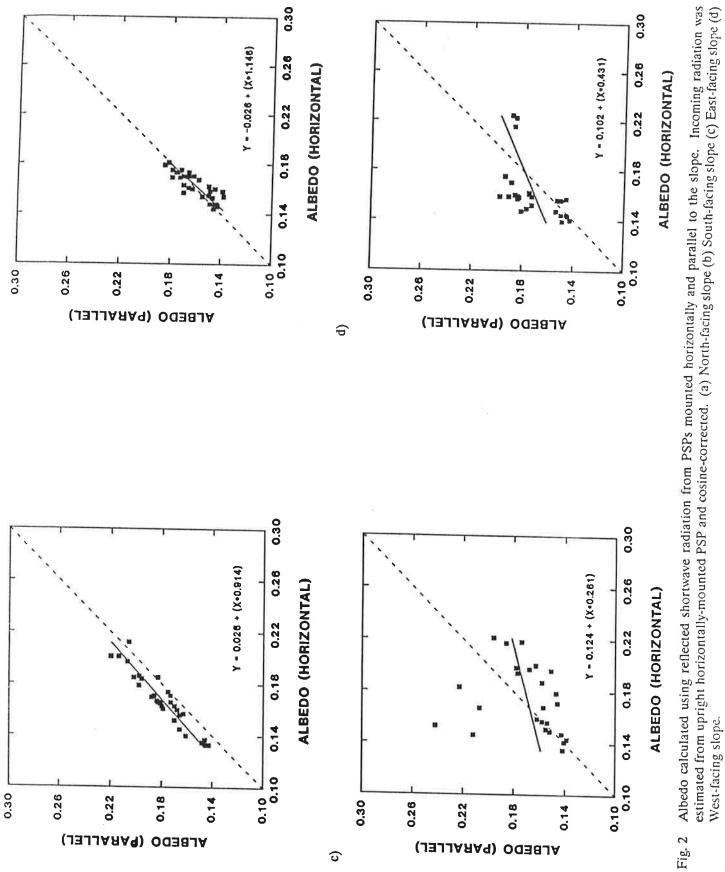



Fig. 1

(in the second s

Ē

a,