5 research outputs found

    Promoting a Patient-Centered Understanding of Safety in Acute Mental Health Wards: A User-Centered Design Approach to Develop a Real-Time Digital Monitoring Tool

    Get PDF
    Background: Acute mental health services report high levels of safety incidents that involve both patients and staff. The potential for patients to be involved in interventions to improve safety within a mental health setting is acknowledged, and there is a need for interventions that proactively seek the patient perspective of safety. Digital technologies may offer opportunities to address this need. Objective: This research sought to design and develop a digital real-time monitoring tool (WardSonar) to collect and collate daily information from patients in acute mental health wards about their perceptions of safety. We present the design and development process and underpinning logic model and programme theory. Methods: The first stage involved a synthesis of the findings from a systematic review and evidence scan, interviews with patients (n=8) and health professionals (n=17), and stakeholder engagement. Cycles of design activities and discussion followed with patients, staff, and stakeholder groups, to design and develop the prototype tool. Results: We drew on patient safety theory and the concepts of contagion and milieu. The data synthesis, design, and development process resulted in three prototype components of the digital monitoring tool (WardSonar): (1) a patient recording interface that asks patients to input their perceptions into a tablet computer, to assess how the ward feels and whether the direction is changing, that is, “getting worse” or “getting better”; (2) a staff dashboard and functionality to interrogate the data at different levels; and (3) a public-facing ward interface. The technology is available as open-source code. Conclusions: Recent patient safety policy and research priorities encourage innovative approaches to measuring and monitoring safety. We developed a digital real-time monitoring tool to collect information from patients in acute mental health wards about perceived safety, to support staff to respond and intervene to changes in the clinical environment more proactively

    Upregulated heme biosynthesis increases obstructive sleep apnea severity: a pathway-based Mendelian randomization study.

    No full text
    Obstructive sleep apnea (OSA) is a common disorder associated with increased risk of cardiovascular disease and mortality. Iron and heme metabolism, implicated in ventilatory control and OSA comorbidities, was associated with OSA phenotypes in recent admixture mapping and gene enrichment analyses. However, its causal contribution was unclear. In this study, we performed pathway-level transcriptional Mendelian randomization (MR) analysis to investigate the causal relationships between iron and heme related pathways and OSA. In primary analysis, we examined the expression level of four iron/heme Reactome pathways as exposures and four OSA traits as outcomes using cross-tissue cis-eQTLs from the Genotype-Tissue Expression portal and published genome-wide summary statistics of OSA. We identify a significant putative causal association between up-regulated heme biosynthesis pathway with higher sleep time percentage of hypoxemia (p = 6.14 × 10-3). This association is supported by consistency of point estimates in one-sample MR in the Multi-Ethnic Study of Atherosclerosis using high coverage DNA and RNA sequencing data generated by the Trans-Omics for Precision Medicine project. Secondary analysis for 37 additional iron/heme Gene Ontology pathways did not reveal any significant causal associations. This study suggests a causal association between increased heme biosynthesis and OSA severity
    corecore