3,821 research outputs found
Atomistic Descriptions of Gas-Surface Interactions on Tin Dioxide
Historically, in gas sensing literature, the focus on “mechanisms” has been on oxygen species chemisorbed (ionosorbed) from the ambient atmosphere, but what these species actually represent and the location of the adsorption site on the surface of the solid are typically not well described. Recent advances in computational modelling and experimental surface science provide insights on the likely mechanism by which oxygen and other species interact with the surface of SnO_{2}, providing insight into future directions for materials design and optimisation. This article reviews the proposed models of adsorption and reaction of oxygen on SnO_{2}, including a summary of conventional evidence for oxygen ionosorption and recent operando spectroscopy studies of the atomistic interactions on the surface. The analysis is extended to include common target and interfering reducing gases, such as CO and H_{2}, cross-interactions with H_{2}O vapour, and NO_{2} as an example of an oxidising gas. We emphasise the importance of the surface oxygen vacancies as both the preferred adsorption site of many gases and in the self-doping mechanism of SnO_{2}
Distinguishing Solar Flare Types by Differences in Reconnection Regions
Observations show that magnetic reconnection and its slow shocks occur in
solar flares. The basic magnetic structures are similar for long duration event
(LDE) flares and faster compact impulsive (CI) flares, but the former require
less non-thermal electrons than the latter. Slow shocks can produce the
required non-thermal electron spectrum for CI flares by Fermi acceleration if
electrons are injected with large enough energies to resonate with scattering
waves. The dissipation region may provide the injection electrons, so the
overall number of non-thermal electrons reaching the footpoints would depend on
the size of the dissipation region and its distance from the chromosphere. In
this picture, the LDE flares have converging inflows toward a dissipation
region that spans a smaller overall length fraction than for CI flares. Bright
loop-top X-ray spots in some CI flares can be attributed to particle trapping
at fast shocks in the downstream flow, the presence of which is determined by
the angle of the inflow field and velocity to the slow shocks.Comment: 15 pages TeX and 2 .eps figures, accepted to Ap.J.Let
Molecular gyroscopes and biological effects of weak ELF magnetic fields
Extremely-low-frequency magnetic fields are known to affect biological
systems. In many cases, biological effects display `windows' in biologically
effective parameters of the magnetic fields: most dramatic is the fact that
relatively intense magnetic fields sometimes do not cause appreciable effect,
while smaller fields of the order of 10--100 T do. Linear resonant
physical processes do not explain frequency windows in this case. Amplitude
window phenomena suggest a nonlinear physical mechanism. Such a nonlinear
mechanism has been proposed recently to explain those `windows'. It considers
quantum-interference effects on protein-bound substrate ions. Magnetic fields
cause an interference of ion quantum states and change the probability of
ion-protein dissociation. This ion-interference mechanism predicts specific
magnetic-field frequency and amplitude windows within which biological effects
occur. It agrees with a lot of experiments. However, according to the
mechanism, the lifetime of ion quantum states within a protein
cavity should be of unrealistic value, more than 0.01 s for frequency band
10--100 Hz. In this paper, a biophysical mechanism has been proposed that (i)
retains the attractive features of the ion interference mechanism and (ii) uses
the principles of gyroscopic motion and removes the necessity to postulate
large lifetimes. The mechanism considers dynamics of the density matrix of the
molecular groups, which are attached to the walls of protein cavities by two
covalent bonds, i.e., molecular gyroscopes. Numerical computations have shown
almost free rotations of the molecular gyros. The relaxation time due to van
der Waals forces was about 0.01 s for the cavity size of 28 angstr\"{o}ms.Comment: 10 pages, 7 figure
Formation of Episodic Magnetically Driven Radiatively Cooled Plasma Jets in the Laboratory
We report on experiments in which magnetically driven radiatively cooled
plasma jets were produced by a 1 MA, 250 ns current pulse on the MAGPIE pulsed
power facility. The jets were driven by the pressure of a toroidal magnetic
field in a ''magnetic tower'' jet configuration. This scenario is characterized
by the formation of a magnetically collimated plasma jet on the axis of a
magnetic ''bubble'', confined by the ambient medium. The use of a radial
metallic foil instead of the radial wire arrays employed in our previous work
allows for the generation of episodic magnetic tower outflows which emerge
periodically on timescales of ~30 ns. The subsequent magnetic bubbles propagate
with velocities reaching ~300 km/s and interact with previous eruptions leading
to the formation of shocks.Comment: 6 pages, 5 figures. Accepted for publication in Astrophysics & Space
Scienc
Accretion Disks and Dynamos: Toward a Unified Mean Field Theory
Conversion of gravitational energy into radiation in accretion discs and the
origin of large scale magnetic fields in astrophysical rotators have often been
distinct topics of research. In semi-analytic work on both problems it has been
useful to presume large scale symmetries, necessarily resulting in mean field
theories. MHD turbulence makes the underlying systems locally asymmetric and
nonlinear. Synergy between theory and simulations should aim for the
development of practical mean field models that capture essential physics and
can be used for observational modeling. Mean field dynamo (MFD) theory and
alpha-viscosity accretion theory exemplify such ongoing pursuits. 21st century
MFD theory has more nonlinear predictive power compared to 20th century MFD
theory, whereas accretion theory is still in a 20th century state. In fact,
insights from MFD theory are applicable to accretion theory and the two are
artificially separated pieces of what should be a single theory. I discuss
pieces of progress that provide clues toward a unified theory. A key concept is
that large scale magnetic fields can be sustained via local or global magnetic
helicity fluxes or via relaxation of small scale magnetic fluctuations, without
the kinetic helicity driver of 20th century textbooks. These concepts may help
explain the formation of large scale fields that supply non-local angular
momentum transport via coronae and jets in a unified theory of accretion and
dynamos. In diagnosing the role of helicities and helicity fluxes in disk
simulations, each disk hemisphere should be studied separately to avoid being
misled by cancelation that occurs as a result of reflection asymmetry. The
fraction of helical field energy in disks is expected to be small compared to
the total field in each hemisphere as a result of shear, but can still be
essential for large scale dynamo action.Comment: For the Proceedings of the Third International Conference and
Advanced School "Turbulent Mixing and Beyond," TMB-2011 held on 21 - 28
August 2011 at the Abdus Salam International Centre for Theoretical Physics,
Trieste, http://users.ictp.it/~tmb/index2011.html Italy, To Appear in Physica
Scripta (corrected small items to match version in print
On particle acceleration and trapping by Poynting flux dominated flows
Using particle-in-cell (PIC) simulations, we study the evolution of a
strongly magnetized plasma slab propagating into a finite density ambient
medium. Like previous work, we find that the slab breaks into discrete magnetic
pulses. The subsequent evolution is consistent with diamagnetic relativistic
pulse acceleration of \cite{liangetal2003}. Unlike previous work, we use the
actual electron to proton mass ratio and focus on understanding trapping vs.
transmission of the ambient plasma by the pulses and on the particle
acceleration spectra. We find that the accelerated electron distribution
internal to the slab develops a double-power law. We predict that emission from
reflected/trapped external electrons will peak after that of the internal
electrons. We also find that the thin discrete pulses trap ambient electrons
but allow protons to pass through, resulting in less drag on the pulse than in
the case of trapping of both species. Poynting flux dominated scenarios have
been proposed as the driver of relativistic outflows and particle acceleration
in the most powerful astrophysical jets.Comment: 25 pages, Accepted by Plasma Physics and Controlled Fusio
- …