649 research outputs found
XSIL: Extensible Scientific Interchange Language
We motivate and define the XSIL language as a flexible, hierarchical, extensible transport language for scientific data objects. The entire object may be represented in the file, or there may be metadata in the XSIL file, with a powerful, fault-tolerant linking mechanism to external data. The language is based on XML, and is designed not only for parsing and processing by machines, but also for presentation to humans through web browsers and web-database technology. There is a natural mapping between the elements of the XSIL language and the object model into which they are translated by the parser. As well as common objects (Parameter, Array, Time, Table), we have extended XSIL to include the IGWDFrame, used by gravitational-wave observatories
Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data
We describe a stream-based analysis pipeline to detect gravitational waves from the merger of binary neutron stars, binary black holes, and neutron-starāblack-hole binaries within ā¼1 min of the arrival of the merger signal at Earth. Such low-latency detection is crucial for the prompt response by electromagnetic facilities in order to observe any fading electromagnetic counterparts that might be produced by mergers involving at least one neutron star. Even for systems expected not to produce counterparts, low-latency analysis of the data is useful for deciding when not to point telescopes, and as feedback to observatory operations. Analysts using this pipeline were the first to identify GW151226, the second gravitational-wave event ever detected. The pipeline also operates in an offline mode, in which it incorporates more refined information about data quality and employs acausal methods that are inapplicable to the online mode. The pipelineās offline mode was used in the detection of the first two gravitational-wave events, GW150914 and GW151226, as well as the identification of a third candidate, LVT151012
Slim Epistemology with a Thick Skin
The distinction between āthickā and āthinā value concepts, and its importance to ethical theory, has been an active topic in recent meta-ethics. This paper defends three claims regarding the parallel issue about thick and thin epistemic concepts. (1) Analogy with ethics offers no straightforward way to establish a good, clear distinction between thick and thin epistemic concepts. (2) Assuming there is such a distinction, there are no semantic grounds for assigning thick epistemic concepts priority over the thin. (3) Nor does the structure of substantive epistemological theory establish that thick epistemic concepts enjoy systematic theoretical priority over the thin. In sum, a good case has yet to be made for any radical theoretical turn to thicker epistemology
New science on the Open Science Grid
The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large-scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement, and the distributed facility. This paper gives both a brief general description and specific examples of new science enabled on the OSG. More information is available at the OSG web site: www.opensciencegrid.org
Parameterized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method
Thanks to the recent discoveries of gravitational wave signals from binary
black hole mergers by Advanced Laser Interferometer Gravitational Wave
Observatory and Advanced Virgo, the genuinely strong-field dynamics of
spacetime can now be probed, allowing for stringent tests of general relativity
(GR). One set of tests consists of allowing for parametrized deformations away
from GR in the template waveform models and then constraining the size of the
deviations, as was done for the detected signals in previous work. In this
paper, we construct reduced-order quadratures so as to speed up likelihood
calculations for parameter estimation on future events. Next, we explicitly
demonstrate the robustness of the parametrized tests by showing that they will
correctly indicate consistency with GR if the theory is valid. We also check to
what extent deviations from GR can be constrained as information from an
increasing number of detections is combined. Finally, we evaluate the
sensitivity of the method to possible violations of GR.Comment: 19 pages, many figures. Matches PRD versio
Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province
The end-Triassic extinction is characterized by major losses in both terrestrial and marine diversity, setting the stage for dinosaurs to dominate Earth for the next 136 million years. Despite the approximate coincidence between this extinction and flood basalt volcanism, existing geochronologic dates have insufficient resolution to confirm eruptive rates required to induce major climate perturbations. Here, we present new zircon uranium-lead (U-Pb) geochronologic constraints on the age and duration of flood basalt volcanism within the Central Atlantic Magmatic Province. This chronology demonstrates synchroneity between the earliest volcanism and extinction, tests and corroborates the existing astrochronologic time scale, and shows that the release of magma and associated atmospheric flux occurred in four pulses over about 600,000 years, indicating expansive volcanism even as the biologic recovery was under way
The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO's Second and Advanced Virgo's First Observing Runs
After their successful first observing run (September 12, 2015 - January 12,
2016), the Advanced LIGO detectors were upgraded to increase their sensitivity
for the second observing run (November 30, 2016 - August 26, 2017). The
Advanced Virgo detector joined the second observing run on August 1, 2017. We
discuss the updates that happened during this period in the GstLAL-based
inspiral pipeline, which is used to detect gravitational waves from the
coalescence of compact binaries both in low latency and an offline
configuration. These updates include deployment of a zero-latency whitening
filter to reduce the over-all latency of the pipeline by up to 32 seconds,
incorporation of the Virgo data stream in the analysis, introduction of a
single-detector search to analyze data from the periods when only one of the
detectors is running, addition of new parameters to the likelihood ratio
ranking statistic, increase in the parameter space of the search, and
introduction of a template mass-dependent glitch-excision thresholding method.Comment: 12 pages, 7 figures, to be submitted to Phys. Rev. D, comments
welcom
The GstLAL template bank for spinning compact binary mergers in the second observation run of Advanced LIGO and Virgo
We describe the methods used to construct the aligned-spin template bank of
gravitational waveforms used by the GstLAL-based inspiral pipeline to analyze
data from the second observing run of Advanced LIGO and Virgo. The bank expands
upon the parameter space covered during the first observing run, including
coverage for merging compact binary systems with total mass between 2
and 400 and mass ratios between 1 and
97.989. Thus the systems targeted include merging neutron star-neutron star
systems, neutron star-black hole binaries, and black hole-black hole binaries
expanding into the intermediate-mass range. Component masses less than 2
have allowed (anti-)aligned spins between while
component masses greater than 2 have allowed
(anti-)aligned between . The bank placement technique combines a
stochastic method with a new grid-bank method to better isolate noisy
templates, resulting in a total of 677,000 templates.Comment: 9 pages, 13 figure
- ā¦