164 research outputs found
A Simple Separable Exact C*-Algebra not Anti-isomorphic to Itself
We give an example of an exact, stably finite, simple. separable C*-algebra D
which is not isomorphic to its opposite algebra. Moreover, D has the following
additional properties. It is stably finite, approximately divisible, has real
rank zero and stable rank one, has a unique tracial state, and the order on
projections over D is determined by traces. It also absorbs the Jiang-Su
algebra Z, and in fact absorbs the 3^{\infty} UHF algebra. We can also
explicitly compute the K-theory of D, namely K_0 (D) = Z[1/3] with the standard
order, and K_1 (D) = 0, as well as the Cuntz semigroup of D.Comment: 16 pages; AMSLaTeX. The material on other possible K-groups for such
an algebra has been moved to a separate paper (1309.4142 [math.OA]
Property (RD) for Hecke pairs
As the first step towards developing noncommutative geometry over Hecke
C*-algebras, we study property (RD) (Rapid Decay) for Hecke pairs. When the
subgroup H in a Hecke pair (G,H) is finite, we show that the Hecke pair (G,H)
has (RD) if and only if G has (RD). This provides us with a family of examples
of Hecke pairs with property (RD). We also adapt Paul Jolissant's works in 1989
to the setting of Hecke C*-algebras and show that when a Hecke pair (G,H) has
property (RD), the algebra of rapidly decreasing functions on the set of double
cosets is closed under holomorphic functional calculus of the associated
(reduced) Hecke C*-algebra. Hence they have the same K_0-groups.Comment: A short note added explaining other methods to prove that the
subalgebra of rapidly decreasing functions is smooth. This is the final
version as published. The published version is available at: springer.co
Tangling clustering of inertial particles in stably stratified turbulence
We have predicted theoretically and detected in laboratory experiments a new
type of particle clustering (tangling clustering of inertial particles) in a
stably stratified turbulence with imposed mean vertical temperature gradient.
In this stratified turbulence a spatial distribution of the mean particle
number density is nonuniform due to the phenomenon of turbulent thermal
diffusion, that results in formation of a gradient of the mean particle number
density, \nabla N, and generation of fluctuations of the particle number
density by tangling of the gradient, \nabla N, by velocity fluctuations. The
mean temperature gradient, \nabla T, produces the temperature fluctuations by
tangling of the gradient, \nabla T, by velocity fluctuations. These
fluctuations increase the rate of formation of the particle clusters in small
scales. In the laboratory stratified turbulence this tangling clustering is
much more effective than a pure inertial clustering that has been observed in
isothermal turbulence. In particular, in our experiments in oscillating grid
isothermal turbulence in air without imposed mean temperature gradient, the
inertial clustering is very weak for solid particles with the diameter 10
microns and Reynolds numbers Re =250. Our theoretical predictions are in a good
agreement with the obtained experimental results.Comment: 16 pages, 4 figures, REVTEX4, revised versio
Relative commutants of strongly self-absorbing C*-algebras
The relative commutant of a strongly self-absorbing
algebra is indistinguishable from its ultrapower . This
applies both to the case when is the hyperfinite II factor and to the
case when it is a strongly self-absorbing C*-algebra. In the latter case we
prove analogous results for and reduced powers
corresponding to other filters on . Examples of algebras with
approximately inner flip and approximately inner half-flip are provided,
showing the optimality of our results. We also prove that strongly
self-absorbing algebras are smoothly classifiable, unlike the algebras with
approximately inner half-flip.Comment: Some minor correction
Operator algebra quantum homogeneous spaces of universal gauge groups
In this paper, we quantize universal gauge groups such as SU(\infty), as well
as their homogeneous spaces, in the sigma-C*-algebra setting. More precisely,
we propose concise definitions of sigma-C*-quantum groups and sigma-C*-quantum
homogeneous spaces and explain these concepts here. At the same time, we put
these definitions in the mathematical context of countably compactly generated
spaces as well as C*-compact quantum groups and homogeneous spaces. We also
study the representable K-theory of these spaces and compute it for the quantum
homogeneous spaces associated to the universal gauge group SU(\infty).Comment: 14 pages. Merged with [arXiv:1011.1073
Coherent States on Hilbert Modules
We generalize the concept of coherent states, traditionally defined as
special families of vectors on Hilbert spaces, to Hilbert modules. We show that
Hilbert modules over -algebras are the natural settings for a
generalization of coherent states defined on Hilbert spaces. We consider those
Hilbert -modules which have a natural left action from another
-algebra say, . The coherent states are well defined in this
case and they behave well with respect to the left action by .
Certain classical objects like the Cuntz algebra are related to specific
examples of coherent states. Finally we show that coherent states on modules
give rise to a completely positive kernel between two -algebras, in
complete analogy to the Hilbert space situation. Related to this there is a
dilation result for positive operator valued measures, in the sense of Naimark.
A number of examples are worked out to illustrate the theory
Monoids of intervals of simple refinement monoids and non-stable K-Theory of multiplier algebras
We show that the representation of the monoid of intervals of a simple refinement monoid in terms of affine semicontinuous functions, given by Perera in 2001, fails to be faithful in the case of strictly perforated monoids. We give some potential applications of this result in the context of monoids of intervals and K-Theory of multiplier rings
Representations of Conformal Nets, Universal C*-Algebras and K-Theory
We study the representation theory of a conformal net A on the circle from a
K-theoretical point of view using its universal C*-algebra C*(A). We prove that
if A satisfies the split property then, for every representation \pi of A with
finite statistical dimension, \pi(C*(A)) is weakly closed and hence a finite
direct sum of type I_\infty factors. We define the more manageable locally
normal universal C*-algebra C*_ln(A) as the quotient of C*(A) by its largest
ideal vanishing in all locally normal representations and we investigate its
structure. In particular, if A is completely rational with n sectors, then
C*_ln(A) is a direct sum of n type I_\infty factors. Its ideal K_A of compact
operators has nontrivial K-theory, and we prove that the DHR endomorphisms of
C*(A) with finite statistical dimension act on K_A, giving rise to an action of
the fusion semiring of DHR sectors on K_0(K_A)$. Moreover, we show that this
action corresponds to the regular representation of the associated fusion
algebra.Comment: v2: we added some comments in the introduction and new references.
v3: new authors' addresses, minor corrections. To appear in Commun. Math.
Phys. v4: minor corrections, updated reference
Leibniz Seminorms and Best Approximation from C*-subalgebras
We show that if B is a C*-subalgebra of a C*-algebra A such that B contains a
bounded approximate identity for A, and if L is the pull-back to A of the
quotient norm on A/B, then L is strongly Leibniz. In connection with this
situation we study certain aspects of best approximation of elements of a
unital C*-algebra by elements of a unital C*-subalgebra.Comment: 24 pages. Intended for the proceedings of the conference "Operator
Algebras and Related Topics". v2: added a corollary to the main theorem, plus
several minor improvements v3: much simplified proof of a key lemma,
corollary to main theorem added v4: Many minor improvements. Section numbers
increased by
K-theory of noncommutative Bieberbach manifolds
We compute $K-theory of noncommutative Bieberbach manifolds, which quotients
of a three-dimensional noncommutative torus by a free action of a cyclic group
Z_N, N=2,3,4,6.Comment: 19 page
- …