25,085 research outputs found

    Coupled Ocean Atmosphere Processes and European Climate (COAPEC): improved understanding of the coupled climate system

    Get PDF
    COAPEC (http://coapec.nerc.ac.uk/) is a five-year Directed Science Programme funded by the Natural Environment Research Council (NERC). COAPEC is providing advances in understanding the mechanisms by which the ocean and atmosphere interact, how these processes are represented in state-of-the-art numerical climate models and how they determine the predictability of the climate system over seasonal-decadal timescales. Processes studied include the generation and propagation of salinity and heat anomalies in the North Atlantic, the influence of the thermohaline circulation and the role of storm tracks on European Climate. The influence of remote processes, including ocean-atmosphere coupling in tropical Atlantic warm events and Southern Ocean circulation are also being investigated. As part of the programme, new coupled models are being developed, including: a coupled hybrid isopycnic coordinate model; fast models for multi-ensemble runs to investigate model parameters space, using both high performance machines and spare home PC resources; a QG model to investigate high resolution ocean processes in coupled systems and validated ice models for coupled modelling. Underpinning research into improving the observational datasets, such as the SOC flux climatology, and into the influence of sea-ice observations in General Circulation Models is also being carried out as part of the programme. To place these advances into a socially relevant context, COAPEC is also investigating the methods for using, and economic benefits of, climate forecasts at seasonal timescales for the UK health sector and the UK energy industry

    Integrated airframe propulsion control

    Get PDF
    Perturbation equations which describe flight dynamics and engine operation about a given operating point are combined to form an integrated aircraft/propulsion system model. Included in the model are the dependence of aerodynamic coefficients upon atmospheric variables along with the dependence of engine variables upon flight condition and inlet performance. An off-design engine performance model is used to identify interaction parameters in the model. Inclusion of subsystem interaction effects introduces coupling between flight and propulsion variables. To analyze interaction effects on control, consideration is first given to control requirements for separate flight and engine models. For the separate airframe model, feedback control provides substantial improvement in short period damping. For the integrated system, feedback control compensates for the coupling present in the model and provides good overall system stability. However, this feedback control law involves many non-zero gains. Analysis of suboptimal control strategies indicates that performance of the closed loop integrated system can be maintained with a feedback matrix in which the number of non-zero gains is small relative to the number of components in the feedback matrix

    Exploring Io's atmospheric composition with APEX: first measurement of 34SO2 and tentative detection of KCl

    Full text link
    The composition of Io's tenuous atmosphere is poorly constrained. Only the major species SO2 and a handful of minor species have been positively identified, but a variety of other molecular species should be present, based on thermochemical equilibrium models of volcanic gas chemistry and the composition of Io's environment. This paper focuses on the spectral search for expected yet undetected molecular species (KCl, SiO, S2O) and isotopes (34SO2). We analyze a disk-averaged spectrum of a potentially line-rich spectral window around 345 GHz, obtained in 2010 at the APEX-12m antenna (Atacama Pathfinder EXperiment). Using different models assuming either extended atmospheric distributions or a purely volcanically-sustained atmosphere, we tentatively measure the KCl relative abundance with respect to SO2 and derive a range of 4x10^{-4}-8x10^{-3}. We do not detect SiO or S2O and present new upper limits on their abundances. We also present the first measurement of the 34S/32S isotopic ratio in gas phase on Io, which appears to be twice as high as the Earth and ISM reference values. Strong lines of SO2 and SO are also analyzed to check for longitudinal variations of column density and relative abundance. Our models show that, based on their predicted relative abundance with respect to SO2 in volcanic plumes, both the tentative KCl detection and SiO upper limit are compatible with a purely volcanic origin for these species.Comment: Accepted for publication in ApJ. 11 pages, 4 figure

    Molecular clouds in the centers of galaxies: Constraints from HCN and CO-13 line emission

    Get PDF
    We have searched for HCN J=1-0 line emission in the centers of 12 galaxies and have detected it in 10 of them. We have obtained complementary data on J=1-0 and 2-1 transitions of CO-12 and CO-13 in these systems. The ratio of integrated intensities, I(CO 1-0)/I(HCN 1-0) = 25 +/- 11 for this sample. We find that HCN emission of this strength can be produced under conditions of subthermal excitation. In combination with the line ratios in CO and CO-13, HCN puts constraints on the mean conditions of molecular clouds and on the mix of cloud types within the projected beam

    Characterizations of quasitrivial symmetric nondecreasing associative operations

    Get PDF
    We provide a description of the class of n-ary operations on an arbitrary chain that are quasitrivial, symmetric, nondecreasing, and associative. We also prove that associativity can be replaced with bisymmetry in the definition of this class. Finally we investigate the special situation where the chain is finite

    Hopf algebras and characters of classical groups

    Full text link
    Schur functions provide an integral basis of the ring of symmetric functions. It is shown that this ring has a natural Hopf algebra structure by identifying the appropriate product, coproduct, unit, counit and antipode, and their properties. Characters of covariant tensor irreducible representations of the classical groups GL(n), O(n) and Sp(n) are then expressed in terms of Schur functions, and the Hopf algebra is exploited in the determination of group-subgroup branching rules and the decomposition of tensor products. The analysis is carried out in terms of n-independent universal characters. The corresponding rings, CharGL, CharO and CharSp, of universal characters each have their own natural Hopf algebra structure. The appropriate product, coproduct, unit, counit and antipode are identified in each case.Comment: 9 pages. Uses jpconf.cls and jpconf11.clo. Presented by RCK at SSPCM'07, Myczkowce, Poland, Sept 200

    Portfolio Optimization and the Random Magnet Problem

    Full text link
    Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movement of assets are are mutually correlated and therefore knowledge of cross--correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this ``random magnet problem'' are given by the cross-correlation matrix {\bf \sf C} of stock returns. We find that random matrix theory allows us to make an estimate for {\bf \sf C} which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.Comment: 12 pages, 4 figures, revte

    Book Reviews

    Get PDF

    First detection of [N II] 205 micrometer absorption in interstellar gas

    Get PDF
    We present high resolution [NII] 205 micrometer ^3P_1-^3P_0 spectra obtained with Herschel-HIFI towards a small sample of far-infrared bright star forming regions in the Galactic plane: W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4), and G34.3+0.1. All sources display an emission line profile associated directly with the HII regions themselves. For the first time we also detect absorption of the [NII] 205 micrometer line by extended low-density foreground material towards W31C and W49N over a wide range of velocities. We attribute this absorption to the warm ionised medium (WIM) and find N(N^+)\approx 1.5x10^17 cm^-2 towards both sources. This is in agreement with recent Herschel-HIFI observations of [CII] 158 micrometer, also observed in absorption in the same sight-lines, if \approx7-10 % of all C^+ ions exist in the WIM on average. Using an abundance ratio of [N]/[H] = 6.76x10^-5 in the gas phase we find that the mean electron and proton volume densities are ~0.1-0.3 cm^-3 assuming a WIM volume filling fraction of 0.1-0.4 with a corresponding line-of-sight filling fraction of 0.46-0.74. A low density and a high WIM filling fraction are also supported by RADEX modelling of the [NII] 205 micrometer absorption and emission together with visible emission lines attributed mainly to the WIM. The detection of the 205 micrometer line in absorption emphasises the importance of a high spectral resolution, and also offers a new tool for investigation of the WIM.Comment: 7 pages, 4 figures, accepted for publication in Astronomy & Astrophysics, 11 June 201
    • …
    corecore