30,619 research outputs found

    X-ray polarimetry with an active-matrix pixel proportional counter

    Full text link
    We report the first results from an X-ray polarimeter with a micropattern gas proportional counter using an amorphous silicon active matrix readout. With 100% polarized X-rays at 4.5 keV, we obtain a modulation factor of 0.33 +/- 0.03, confirming previous reports of the high polarization sensitivity of a finely segmented pixel proportional counter. The detector described here has a geometry suitable for the focal plane of an astronomical X-ray telescope. Amorphous silicon readout technology will enable additional extensions and improvements.Comment: 4 pages, 4 figures, 1 tabl

    Blade loss transient dynamics analysis. Volume 3: User's manual for TETRA program

    Get PDF
    The users manual for TETRA contains program logic, flow charts, error messages, input sheets, modeling instructions, option descriptions, input variable descriptions, and demonstration problems. The process of obtaining a NASTRAN 17.5 generated modal input file for TETRA is also described with a worked sample

    Structure, bonding and morphology of hydrothermally synthesised xonotlite

    No full text
    The authors have systematically investigated the role of synthesis conditions upon the structure and morphology of xonotlite. Starting with a mechanochemically prepared, semicrystalline phase with Ca/Si=1, the authors have prepared a series of xonotlite samples hydrothermally, at temperatures between 200 and 250 degrees C. Analysis in each case was by X-ray photoelectron spectroscopy, environmental scanning electron microscopy and X-ray diffraction. The authors’ use of a much lower water/solid ratio has indirectly confirmed the ‘through solution’ mechanism of xonotlite formation, where silicate dissolution is a key precursor of xonotlite formation. Concerning the role of temperature, too low a temperature (~200 degrees C) fails to yield xonotlite or leads to increased number of structural defects in the silicate chains of xonotlite and too high a temperature (>250 degrees C) leads to degradation of the xonotlite structure, through leaching of interchain calcium. Synthesis duration meanwhile leads to increased silicate polymerisation due to diminishing of the defects in the silicate chains and more perfect crystal morphologies

    Estimates of the duration of untreated acute malnutrition in children from Niger.

    Get PDF
    Expected incidence of acute malnutrition is the most appropriate measure for projecting the needs of a nutritional treatment program over time in terms of staffing, food, and other treatments, but direct estimation of incidence is rarely feasible at the onset of an intervention. While incidence may be approximated as prevalence/average duration, ethical constraints preclude measurement of the duration of acute malnutrition in the absence of treatment. The authors used a compartmental model to estimate the duration of untreated moderate acute malnutrition (MAM) and severe acute malnutrition (SAM) in children aged 6-60 months. The model was informed by data from a community-based cohort of children in Niger followed from August 2006 to March 2007. Maximum likelihood estimates for the duration of untreated MAM, defined by weight-for-height z score and middle upper arm circumference, were 75-81 days and 101-116 days, respectively. The duration of untreated SAM, defined by weight-for-height z score, was 45 days. The duration of untreated MAM appears to have been shorter among children aged 6-35 months compared with those aged 36-60 months. Such estimates of the duration, and thus incidence, of untreated malnutrition can be used to improve projections of program needs and estimates of the global burden of acute malnutrition

    Investigating the nature of the Fried Egg nebula: CO mm-line and optical spectroscopy of IRAS 17163-3907

    Get PDF
    Through CO mm-line and optical spectroscopy, we investigate the properties of the Fried Egg nebula IRAS 17163-3907, which has recently been proposed to be one of the rare members of the yellow hypergiant class. The CO J=2-1 and J=3-2 emission arises from a region within 20" of the star and is clearly associated with the circumstellar material. The CO lines show a multi-component asymmetrical profile, and an unexpected velocity gradient is resolved in the east-west direction, suggesting a bipolar outflow. This is in contrast with the apparent symmetry of the dust envelope as observed in the infrared. The optical spectrum of IRAS 17163-3907 between 5100 and 9000 {\AA} was compared with that of the archetypal yellow hypergiant IRC+10420 and was found to be very similar. These results build on previous evidence that IRAS 17163-3907 is a yellow hypergiant.Comment: 14 pages including appendix, accepted for publication in A&

    Progressive Redshifts in the Late-Time Spectra of Type IA Supernovae

    Get PDF
    We examine the evolution of late-time, optical nebular features of Type Ia supernovae (SNe Ia) using a sample consisting of 160 spectra of 27 normal SNe Ia taken from the literature as well as unpublished spectra of SN 2008Q and ASASSN-14lp. Particular attention was given to nebular features between 4000-6000 A in terms of temporal changes in width and central wavelength. Analysis of the prominent late-time 4700 A feature shows a progressive central wavelength shift from ~4600 A to longer wavelengths out to at least day +300 for our entire sample. We find no evidence for the feature\u27s red-ward shift slowing or halting at an [Fe III] blend centroid of 4701 A as has been proposed. The width of the feature also steadily increases with a FWHM ~170 A at day +100 growing to 200 A or more by day +350. Two weaker adjacent features around 4850 and 5000 A exhibit very similar red shifts to that of the 4700 A feature but show no change in width until very late times. We discuss possible causes for the observed red-ward shifting of these late-time optical features including contribution from [Co II] emission at early nebular epochs and the emergence of additional features at later times. We conclude that the ubiquitous red shift of these common late-time, nebular SN Ia spectral features is not mainly due to a decrease in a blueshift of forbidden Fe lines but the result, in part, of decreasing velocity and/or optical depth of permitted Fe lines

    870 micron observations of nearby 3CRR radio galaxies

    Full text link
    We present submillimeter continuum observations at 870 microns of the cores of low redshift 3CRR radio galaxies, observed at the Heinrich Hertz Submillimeter Telescope. The cores are nearly flat spectrum between the radio and submillimeter which implies that the submillimeter continuum is likely to be synchrotron emission and not thermal emission from dust. The emitted power from nuclei detected at optical wavelengths and in the X-rays is similar in the submillimeter, optical and X-rays. The submillimeter to optical and X-ray power ratios suggest that most of these sources resemble misdirected BL Lac type objects with synchrotron emission peaking at low energies. However we find three exceptions, the FR I galaxy 3C264 and the FR II galaxies 3C390.3 and 3C338 with high X-ray to submillimeter luminosity ratios. These three objects are candidate high or intermediate energy peaked BL Lac type objects. With additional infrared observations and from archival data, we compile spectral energy distributions (SEDs) for a subset of these objects. The steep dips observed near the optical wavelengths in many of these objects suggest that extinction inhibits the detection and reduces the flux of optical continuum core counterparts. High resolution near or mid-infrared imaging may provide better measurements of the underlying synchrotron emission peak.Comment: accepted for publication in A

    The nature of a broad line radio galaxy: Simultaneous RXTE and Chandra HETG observations of 3C 382

    Full text link
    We present the results from simultaneous chandra and rxte observations of the X-ray bright Broad-Line Radio Galaxy (BLRG) 3C 382. The long (120 ks) exposure with chandra HETG allows a detailed study of the soft X-ray continuum and of the narrow component of the Fe Kalpha line. The rxte PCA data are used to put an upper limit on the broad line component and constrain the hard X-ray continuum. A strong soft excess below 1 keV is observed in the time-averaged HETG spectrum, which can be parameterized with a steep power law or a thermal model. The flux variability at low energies indicates that the origin of the soft excess cannot be entirely ascribed to the circumnuclear diffuse emission, detected by chandra on scales of 20-30 arcsec (22-33 kpc). A narrow (sigma<90 eV) Fe Kalpha line (with EW< 100 eV) is observed by the chandra HEG. Similar values for the line parameters are measured by the rxte PCA, suggesting that the contribution from a broad line component is negligible. The fact that the exposure is split into two observations taken three days apart allows us to investigate the spectral and temporal evolution of the source on different timescales. Significant flux variability associated with spectral changes is observed on timescales of hours and days. The spectral variability is similar to that observed in radio-quiet AGN ruling out a jet-dominated origin of the X-rays.Comment: 19 pages, 10 figures, 3 tables, accepted for publication in Ap

    Positive impact of low-dose, high-energy radiation on bone in partial- and/or full-weightbearing mice

    Get PDF
    Astronauts traveling beyond low Earth orbit will be exposed to galactic cosmic radiation (GCR); understanding how high energy ionizing radiation modifies the bone response to mechanical unloading is important to assuring crew health. To investigate this, we exposed 4-mo-old female Balb/cBYJ mice to an acute space-relevant dose of 0.5 Gy 56Fe or sham (n = ~8/group); 4 days later, half of the mice were also subjected to a ground-based analog for 1/6 g (partial weightbearing) (G/6) for 21 days. Microcomputed tomography (µ-CT) of the distal femur reveals that 56Fe exposure resulted in 65-78% greater volume and improved microarchitecture of cancellous bone after 21 d compared to sham controls. Radiation also leads to significant increases in three measures of energy absorption at the mid-shaft femur and an increase in stiffness of the L4 vertebra. No significant effects of radiation on bone formation indices are detected; however, G/6 leads to reduced % mineralizing surface on the inner mid-tibial bone surface. In separate groups allowed 21 days of weightbearing recovery from G/6 and/or 56Fe exposure, radiation-exposed mice still exhibit greater bone mass and improved microarchitecture vs. sham control. However, femoral bone energy absorption values are no longer higher in the 56Fe-exposed WB mice vs. sham controls. We provide evidence for persistent positive impacts of high-LET radiation exposure preceding a period of full or partial weightbearing on bone mass and microarchitecture in the distal femur and, for full weightbearing mice only and more transiently, cortical bone energy absorption values
    • …
    corecore