85 research outputs found

    Atypical periosteal osteoid osteoma: a case report

    Get PDF
    Osteoid osteoma is a benign osteoblastic tumor usually seen in adolescent and young males. In the paediatric age group, since the history may be difficult to elicit, there are often problems in early diagnosis. The author reports an unusual presentation of osteoid osteoma in a ten-year-old girl, which could not be diagnosed by conventional X-rays and CT scan

    Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and Ξ²-lactam resistance in <em>Escherichia coli</em>

    Get PDF
    International audienceThe target of Ξ²-lactam antibiotics is the D,D-transpeptidase activity of penicillin-binding proteins (PBPs) for synthesis of 4β†’3 cross-links in the peptidoglycan of bacterial cell walls. Unusual 3β†’3 cross-links formed by L,D-transpeptidases were first detected in Escherichia coli more than four decades ago, however no phenotype has previously been associated with their synthesis. Here we show that production of the L,D-transpeptidase YcbB in combination with elevated synthesis of the (p)ppGpp alarmone by RelA lead to full bypass of the D,D-transpeptidase activity of PBPs and to broad-spectrum Ξ²-lactam resistance. Production of YcbB was therefore sufficient to switch the role of (p)ppGpp from antibiotic tolerance to high-level Ξ²-lactam resistance. This observation identifies a new mode of peptidoglycan polymerization in E. coli that relies on an unexpectedly small number of enzyme activities comprising the glycosyltransferase activity of class A PBP1b and the D,D-carboxypeptidase activity of DacA in addition to the L,D-transpeptidase activity of YcbB

    Limited tolerance towards folded elements during secretion of the autotransporter Hbp

    Get PDF
    Many virulence factors secreted by pathogenic Gram-negative bacteria belong to the autotransporter (AT) family. ATs consist of a passenger domain, which is the actual secreted moiety, and a Ξ²-domain that facilitates the transfer of the passenger domain across the outer membrane. Here, we analysed folding and translocation of the AT passenger, using Escherichia coli haemoglobin protease (Hbp) as a model protein. Dual cysteine mutagenesis, instigated by the unique crystal structure of the Hbp passenger, resulted in intramolecular disulphide bond formation dependent on the periplasmic enzyme DsbA. A small loop tied off by a disulphide bond did not interfere with secretion of Hbp. In contrast, a bond between different domains of the Hbp passenger completely blocked secretion resulting in degradation by the periplasmic protease DegP. In the absence of DegP, a translocation intermediate accumulated in the outer membrane. A similar jammed intermediate was formed upon insertion of a calmodulin folding moiety into Hbp. The data suggest that Hbp can fold in the periplasm but must retain a certain degree of flexibility and/or modest width to allow translocation across the outer membrane

    Disrupting the Acyl Carrier Protein/SpoT Interaction In Vivo: Identification of ACP Residues Involved in the Interaction and Consequence on Growth

    Get PDF
    In bacteria, Acyl Carrier Protein (ACP) is the central cofactor for fatty acid biosynthesis. It carries the acyl chain in elongation and must therefore interact successively with all the enzymes of this pathway. Yet, ACP also interacts with proteins of diverse unrelated function. Among them, the interaction with SpoT has been proposed to be involved in regulating ppGpp levels in the cell in response to fatty acid synthesis inhibition. In order to better understand this mechanism, we screened for ACP mutants unable to interact with SpoT in vivo by bacterial two-hybrid, but still functional for fatty acid synthesis. The position of the selected mutations indicated that the helix II of ACP is responsible for the interaction with SpoT. This suggested a mechanism of recognition similar to one used for the enzymes of fatty acid synthesis. Consistently, the interactions tested by bacterial two-hybrid of ACP with fatty acid synthesis enzymes were also affected by the mutations that prevented the interaction with SpoT. Yet, interestingly, the corresponding mutant strains were viable, and the phenotypes of one mutant suggested a defect in growth regulation

    Cell Size and the Initiation of DNA Replication in Bacteria

    Get PDF
    In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ∼30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA

    The SsgA-like proteins in actinomycetes: small proteins up to a big task

    Get PDF
    Several unique protein families have been identified that play a role in the control of developmental cell division in streptomycetes. The SsgA-like proteins or SALPs, of which streptomycetes typically have at least five paralogues, control specific steps of sporulation-specific cell division in streptomycetes, affecting cell wall-related events such as septum localization and synthesis, thickening of the spore wall and autolytic spore separation. The expression level of SsgA, the best studied SALP, has a rather dramatic effect on septation and on hyphal morphology, which is not only of relevance for our understanding of (developmental) cell division but has also been succesfully applied in industrial fermentation, to improve growth and production of filamentous actinomycetes. Recent observations suggest that SsgB most likely is the archetypal SALP, with only SsgB orthologues occurring in all morphologically complex actinomycetes. Here we review 10Β years of research on the SsgA-like proteins in actinomycetes and discuss the most interesting regulatory, functional, phylogenetic and applied aspects of this relatively unknown protein family

    Kinetic Modeling of the Assembly, Dynamic Steady State, and Contraction of the FtsZ Ring in Prokaryotic Cytokinesis

    Get PDF
    Cytokinesis in prokaryotes involves the assembly of a polymeric ring composed of FtsZ protein monomeric units. The Z ring forms at the division plane and is attached to the membrane. After assembly, it maintains a stable yet dynamic steady state. Once induced, the ring contracts and the membrane constricts. In this work, we present a computational deterministic biochemical model exhibiting this behavior. The model is based on biochemical features of FtsZ known from in vitro studies, and it quantitatively reproduces relevant in vitro data. An essential part of the model is a consideration of interfacial reactions involving the cytosol volume, where monomeric FtsZ is dispersed, and the membrane surface in the cell's mid-zone where the ring is assembled. This approach allows the same chemical model to simulate either in vitro or in vivo conditions by adjusting only two geometrical parameters. The model includes minimal reactions, components, and assumptions, yet is able to reproduce sought-after in vivo behavior, including the rapid assembly of the ring via FtsZ-polymerization, the formation of a dynamic steady state in which GTP hydrolysis leads to the exchange of monomeric subunits between cytoplasm and the ring, and finally the induced contraction of the ring. The model gives a quantitative estimate for coupling between the rate of GTP hydrolysis and of FtsZ subunit turnover between the assembled ring and the cytoplasmic pool as observed. Membrane constriction is chemically driven by the strong tendency of GTP-bound FtsZ to self-assembly. The model suggests a possible mechanism of membrane contraction without a motor protein. The portion of the free energy of GTP hydrolysis released in cyclization is indirectly used in this energetically unfavorable process. The model provides a limit to the mechanistic complexity required to mimic ring behavior, and it highlights the importance of parallel in vitro and in vivo modeling

    Characterization of ftsZ Mutations that Render Bacillus subtilis Resistant to MinC

    Get PDF
    Background: Cell division in Bacillus subtilis occurs precisely at midcell. Positional control of cell division is exerted by two mechanisms: nucleoid occlusion, through Noc, which prevents division through nucleoids, and the Min system, where the combined action of the MinC, D and J proteins prevents formation of the FtsZ ring at cell poles or recently completed division sites. Methodology/Principal Findings: We used a genetic screen to identify mutations in ftsZ that confer resistance to the lethal overexpression of the MinC/MinD division inhibitor. The FtsZ mutants were purified and found to polymerize to a similar or lesser extent as wild type FtsZ, and all mutants displayed reduced GTP hydrolysis activity indicative of a reduced polymerization turnover. We found that even though the mutations conferred in vivo resistance to MinC/D, the purified FtsZ mutants did not display strong resistance to MinC in vitro. Conclusions/Significance: Our results show that in B. subtilis, overproduction of MinC can be countered by mutations that alter FtsZ polymerization dynamics. Even though it would be very likely that the FtsZ mutants found depend on other Z-ring stabilizing proteins such as ZapA, FtsA or SepF, we found this not to be the case. This indicates that the cell division process in B. subtilis is extremely robust.

    Peptidoglycan-Modifying Enzyme Pgp1 Is Required for Helical Cell Shape and Pathogenicity Traits in Campylobacter jejuni

    Get PDF
    The impact of bacterial morphology on virulence and transmission attributes of pathogens is poorly understood. The prevalent enteric pathogen Campylobacter jejuni displays a helical shape postulated as important for colonization and host interactions. However, this had not previously been demonstrated experimentally. C. jejuni is thus a good organism for exploring the role of factors modulating helical morphology on pathogenesis. We identified an uncharacterized gene, designated pgp1 (peptidoglycan peptidase 1), in a calcofluor white-based screen to explore cell envelope properties important for C. jejuni virulence and stress survival. Bioinformatics showed that Pgp1 is conserved primarily in curved and helical bacteria. Deletion of pgp1 resulted in a striking, rod-shaped morphology, making pgp1 the first C. jejuni gene shown to be involved in maintenance of C. jejuni cell shape. Pgp1 contributes to key pathogenic and cell envelope phenotypes. In comparison to wild type, the rod-shaped pgp1 mutant was deficient in chick colonization by over three orders of magnitude and elicited enhanced secretion of the chemokine IL-8 in epithelial cell infections. Both the pgp1 mutant and a pgp1 overexpressing strain – which similarly produced straight or kinked cells – exhibited biofilm and motility defects. Detailed peptidoglycan analyses via HPLC and mass spectrometry, as well as Pgp1 enzyme assays, confirmed Pgp1 as a novel peptidoglycan DL-carboxypeptidase cleaving monomeric tripeptides to dipeptides. Peptidoglycan from the pgp1 mutant activated the host cell receptor Nod1 to a greater extent than did that of wild type. This work provides the first link between a C. jejuni gene and morphology, peptidoglycan biosynthesis, and key host- and transmission-related characteristics
    • …
    corecore