184 research outputs found
Increased Postprandial Nonesterified Fatty Acid Appearance and Oxidation in Type 2 Diabetes Is Not Fully Established in Offspring of Diabetic Subjects
BACKGROUND: It has been proposed that abnormal postprandial plasma nonesterified fatty acid (NEFA) metabolism may participate in the development of tissue lipotoxicity and type 2 diabetes (T2D). We previously found that non-diabetic offspring of two parents with T2D display increased plasma NEFA appearance and oxidation rates during intravenous administration of a fat emulsion. However, it is currently unknown whether plasma NEFA appearance and oxidation are abnormal during the postprandial state in these subjects at high-risk of developing T2D. METHODOLOGY: Palmitate appearance and oxidation rates and glycerol appearance rate were determined in eleven healthy offspring of two parents with T2D (positive family history, FH+), 13 healthy subjects without first-degree relatives with T2D (FH-) and 12 subjects with T2D at fasting, during normoglycemic hyperinsulinemic clamp and during continuous oral intake of a standard liquid meal to achieve steady postprandial NEFA and triacylglycerols (TG) without and with insulin infusion to maintain similar glycemia in all three groups. PRINCIPAL FINDINGS: Plasma palmitate appearance and oxidation were higher at fasting and during the clamp conditions in the T2D group (all P<0.05). In the postprandial state, palmitate appearance, oxidative and non oxidative rates were all elevated in T2D (all P<0.05) but not in FH+. Both T2D and FH+ displayed elevated postprandial TG vs. FH- (P<0.001). Acute correction of hyperglycemia during the postprandial state did not affect these group differences. Increased waist circumference and BMI were positively associated with elevated postprandial plasma palmitate appearance and oxidation. CONCLUSIONS/SIGNIFICANCE: Postprandial plasma NEFA intolerance observed in subjects with T2D is not fully established in non-diabetic offspring of both parents with T2D, despite the presence of increased postprandial plasma TG in the later. Elevated postprandial plasma NEFA appearance and oxidation in T2D is observed despite acute correction of the exaggerated glycemic excursion in this group
Association of a beta-2 adrenoceptor (ADRB2) gene variant with a blunted in vivo lipolysis and fat oxidation
Background and aims:Obesity is associated with a blunted beta-adrenoceptor-mediated lipolysis and fat oxidation. We investigated whether polymorphisms in codon 16, 27 and 164 of the beta (2)-adrenoceptor gene (ADRB2) and exon 10 of the G protein beta (3)-subunit gene (GNB3) are associated with alterations in in vivo lipolysis and fat oxidation.Design and methods:Sixty-five male and 43 female overweight and obese subjects (body mass index (BMI) range: 26.1-48.4 kg/m(2)) were included. Energy expenditure (EE), respiratory quotient (RQ), circulating free fatty acid (FFA) and glycerol levels were determined after stepwise infusion of increasing doses of the non-selective beta-agonist isoprenaline (ISO).Results:In women, the Arg16 allele of the ADRB2 gene was associated with a blunted increase in circulating FFA, glycerol and a decreased fat oxidation during ISO stimulation. In men, the Arg16 allele was significantly associated with a blunted increase in FFA but not in glycerol or fat oxidation.Conclusion:These results suggest that genetic variation in the ADRB2 gene is associated with disturbances in in vivo beta-adrenoceptor-mediated lipolysis and fat oxidation during beta-adrenergic stimulation in overweight and obese subjects; these effects are influenced by gene-gender interactions.International Journal of Obesity advance online publication, 28 November 2006; doi:10.1038/sj.ijo.0803499
The ABCD of Obesity: An EASO Position Statement on a Diagnostic Term with Clinical and Scientific Implications
Obesity is a frequent, serious, complex, relapsing, and chronic disease process that represents a major public health problem. The coining of obesity as an adiposity-based chronic disease (ABCD) is of particular relevance being in line with EASO’s proposal to improve the International Classification of Diseases ICD-11 diagnostic criteria for obesity based on three dimensions, namely etiology, degree of adiposity, and health risks. The body mass index as a unique measurement of obesity does not reflect the whole complexity of the disease. Obesity complications are mainly determined by 2 pathological processes, i.e., physical forces (fat mass disease) as well as endocrine and immune responses (sick fat disease), which are embedded in a cultural and physical context leading to a specific ABCD stage
Adipose triglyceride lipase (ATGL) expression in human skeletal muscle is type I (oxidative) fiber specific
Accumulation of triacylglycerol (TAG) and lipid intermediates in skeletal muscle plays an important role in the etiology of insulin resistance and type 2 diabetes mellitus. Disturbances in skeletal muscle lipid turnover and lipolysis may contribute significantly to this. So far, knowledge on the regulation of muscle lipolysis is limited. Recently the identification of a new lipase was reported: adipose triglyceride lipase (ATGL). ATGL deficient animals show significant lipid accumulation in skeletal muscle, which may indicate that ATGL plays a pivotal role in skeletal muscle lipolysis. However, until now, it is still unknown whether ATGL protein is expressed in human skeletal muscle. Therefore, the aim of the present study was to investigate whether ATGL is expressed at the protein level in human skeletal muscle, and to examine whether its expression is fiber-type specific. To accomplish this, we established an imunohistochemical and immunofluorescent staining procedure to study ATGL protein expression in relation to fiber type in human vastus lateralis muscle of eight male subjects (BMI range: 21.0–34.5 kg/m2 and age: 38–59 years). In the present paper we report for the first time that ATGL protein is indeed expressed in human skeletal muscle. Moreover, ATGL is exclusively expressed in type I (oxidative) muscle fibers, suggesting a pivotal role for ATGL in intramuscular fatty acid handling, lipid storage and breakdown
Physical activity and sedentary behavior show distinct associations with tissue-specific insulin sensitivity in adults with overweight
Aim: The aim of this study is to investigate associations between the physical activity (PA) spectrum (sedentary behavior to exercise) and tissue-specific insulin resistance (IR). Methods: We included 219 participants for analysis (median [IQR]: 61 [55; 67] years, BMI 29.6 [26.9; 32.0] kg/m2; 60% female) with predominant muscle or liver IR, as determined using a 7-point oral glucose tolerance test (OGTT). PA and sedentary behavior were measured objectively (ActivPAL) across 7 days. Context-specific PA was assessed with the Baecke questionnaire. Multiple linear regression models (adjustments include age, sex, BMI, site, season, retirement, and dietary intake) were used to determine associations between the PA spectrum and hepatic insulin resistance index (HIRI), muscle insulin sensitivity index (MISI) and whole-body IR (HOMA-IR, Matsuda index). Results: In fully adjusted models, objectively measured total PA (standardized regression coefficient β = 0.17, p = 0.020), light-intensity PA (β = 0.15, p = 0.045) and moderate-to-vigorous intensity PA (β = 0.13, p = 0.048) were independently associated with Matsuda index, but not HOMA-IR (p > 0.05). A higher questionnaire-derived sport index and leisure index were associated with significantly lower whole-body IR (Matsuda, HOMA-IR) in men but not in women. Results varied across tissues: more time spent sedentary (β = −0.24, p = 0.045) and a higher leisure index (β = 0.14, p = 0.034) were respectively negatively and positively associated with MISI, but not HIRI. A higher sport index was associated with lower HIRI (β = −0.30, p = 0.007, in men only). Conclusion: While we confirm a beneficial association between PA and whole-body IR, our findings indicate that associations between the PA spectrum and IR seem distinct depending on the primary site of insulin resistance (muscle or liver)
Effects of acute glucocorticoid blockade on metabolic dysfunction in patients with type 2 diabetes with and without fatty liver
To investigate the potential of therapies which reduce glucocorticoid action in patients with Type 2 diabetes we performed a randomized, double-blinded, placebo-controlled crossover study of acute glucocorticoid blockade, using the glucocorticoid receptor antagonist RU38486 (mifepristone) and cortisol biosynthesis inhibitor (metyrapone), in 14 men with Type 2 diabetes. Stable isotope dilution methodologies were used to measure the rates of appearance of glucose, glycerol, and free fatty acids (FFAs), including during a low-dose (10 mU·m −2·min−1) hyperinsulinemic clamp, and subgroup analysis was conducted in patients with high or low liver fat content measured by magnetic resonance spectroscopy (n = 7/group). Glucocorticoid blockade lowered fasting glucose and insulin levels and improved insulin sensitivity of FFA and glycerol turnover and hepatic glucose production. Among this population with Type 2 diabetes high liver fat was associated with hyperinsulinemia, higher fasting glucose levels, peripheral and hepatic insulin resistance, and impaired suppression of FFA oxidation and FFA and glycerol turnover during hyperinsulinemia. Glucocorticoid blockade had similar effects in those with and without high liver fat. Longer term treatments targeting glucocorticoid action may be useful in Type 2 diabetes with and without fatty liver
Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: a new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus
Type 2 diabetes is associated with excessive food intake and a sedentary lifestyle. Local inflammation of white adipose tissue induces cytokine-mediated insulin resistance of adipocytes. This results in enhanced lipolysis within these cells. The fatty acids that are released into the cytosol can be removed by mitochondrial β-oxidation. The flux through this pathway is normally limited by the rate of ADP supply, which in turn is determined by the metabolic activity of the adipocyte. It is expected that the latter does not adapt to an increased rate of lipolysis. We propose that elevated fatty acid concentrations in the cytosol of adipocytes induce mitochondrial uncoupling and thereby allow mitochondria to remove much larger amounts of fatty acids. By this, release of fatty acids out of adipocytes into the circulation is prevented. When the rate of fatty acid release into the cytosol exceeds the β-oxidation capacity, cytosolic fatty acid concentrations increase and induce mitochondrial toxicity. This results in a decrease in β-oxidation capacity and the entry of fatty acids into the circulation. Unless these released fatty acids are removed by mitochondrial oxidation in active muscles, these fatty acids result in ectopic triacylglycerol deposits, induction of insulin resistance, beta cell damage and diabetes. Thiazolidinediones improve mitochondrial function within adipocytes and may in this way alleviate the burden imposed by the excessive fat accumulation associated with the metabolic syndrome. Thus, the number and activity of mitochondria within adipocytes contribute to the threshold at which fatty acids are released into the circulation, leading to insulin resistance and type 2 diabetes
Physiologically based pharmacokinetic modeling of arterial – antecubital vein concentration difference
BACKGROUND: Modeling of pharmacokinetic parameters and pharmacodynamic actions requires knowledge of the arterial blood concentration. In most cases, experimental measurements are only available for a peripheral vein (usually antecubital) whose concentration may differ significantly from both arterial and central vein concentration. METHODS: A physiologically based pharmacokinetic (PBPK) model for the tissues drained by the antecubital vein (referred to as "arm") is developed. It is assumed that the "arm" is composed of tissues with identical properties (partition coefficient, blood flow/gm) as the whole body tissues plus a new "tissue" representing skin arteriovenous shunts. The antecubital vein concentration depends on the following parameters: the fraction of "arm" blood flow contributed by muscle, skin, adipose, connective tissue and arteriovenous shunts, and the flow per gram of the arteriovenous shunt. The value of these parameters was investigated using simultaneous experimental measurements of arterial and antecubital concentrations for eight solutes: ethanol, thiopental, (99)Tc(m)-diethylene triamine pentaacetate (DTPA), ketamine, D(2)O, acetone, methylene chloride and toluene. A new procedure is described that can be used to determine the arterial concentration for an arbitrary solute by deconvolution of the antecubital concentration. These procedures are implemented in PKQuest, a general PBPK program that is freely distributed . RESULTS: One set of "standard arm" parameters provides an adequate description of the arterial/antecubital vein concentration for ethanol, DTPA, thiopental and ketamine. A significantly different set of "arm" parameters was required to describe the data for D(2)O, acetone, methylene chloride and toluene – probably because the "arm" is in a different physiological state. CONCLUSIONS: Using the set of "standard arm" parameters, the antecubital vein concentration can be used to determine the whole body PBPK model parameters for an arbitrary solute without any additional adjustable parameters. Also, the antecubital vein concentration can be used to estimate the arterial concentration for an arbitrary input for solutes for which no arterial concentration data is available
- …