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ORIGINAL ARTICLE

Association of a beta-2 adrenoceptor (ADRB2) gene
variant with a blunted in vivo lipolysis and fat oxidation

JWE Jocken1, EE Blaak1, S Schiffelers1, P Arner2, MA van Baak1 and WHM Saris1

1Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, Maastricht,
The Netherlands and 2Department of Medicine, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden

Background and aims: Obesity is associated with a blunted b-adrenoceptor-mediated lipolysis and fat oxidation. We
investigated whether polymorphisms in codon 16, 27 and 164 of the b2-adrenoceptor gene (ADRB2) and exon 10 of the
G protein b3-subunit gene (GNB3) are associated with alterations in in vivo lipolysis and fat oxidation.
Design and methods: Sixty-five male and 43 female overweight and obese subjects (body mass index (BMI) range:
26.1–48.4 kg/m2) were included. Energy expenditure (EE), respiratory quotient (RQ), circulating free fatty acid (FFA) and
glycerol levels were determined after stepwise infusion of increasing doses of the non-selective b-agonist isoprenaline (ISO).
Results: In women, the Arg16 allele of the ADRB2 gene was associated with a blunted increase in circulating FFA, glycerol and a
decreased fat oxidation during ISO stimulation. In men, the Arg16 allele was significantly associated with a blunted increase in
FFA but not in glycerol or fat oxidation.
Conclusion: These results suggest that genetic variation in the ADRB2 gene is associated with disturbances in in vivo
b-adrenoceptor-mediated lipolysis and fat oxidation during b-adrenergic stimulation in overweight and obese subjects; these
effects are influenced by gene–gender interactions.
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Introduction

Obesity is characterized by increased circulating free fatty

acid (FFA) concentrations and increased triglyceride (TG)

storage within adipose tissue. In vivo studies have shown that

the development or maintenance of increased adipose tissue

stores might be promoted by a blunted lipolytic response

and fat oxidation after b-adrenergic stimulation or exercise

in obese or obese type 2 diabetic subjects.1–4 This blunted

b-adrenoceptor-mediated lipolysis and fat oxidation persisted

after weight reduction, indicating that this disturbance

may be an early, even primary factor, in the develop-

ment or maintenance of increased adipose stores.1 There

are indications that the blunted b-adrenergically mediated

lipolysis in obesity may be related to an impaired function or

a reduced number of adipocyte beta-2 (b2) adrenoceptors.5,6

b2-Adrenoceptors are stimulatory G-protein-coupled (Gs)

receptors. The b2-adrenoceptor (ADRB2) gene is encoded by

an intronless gene on chromosome 5q31–q32.7,8 Several

polymorphisms of the human ADRB2 gene have been

described.9,10 Among these, three common single-nucleotide

polymorphisms (SNPs) result in the substitution of an amino

acid. One is located at codon 16, substituting arginine

for glycine (Arg16Gly). The other one is located at codon 27,

substituting glutamic acid for glutamine (Gln27Glu). Both

variants are located in the extracellular amino-terminal

region of the receptor and alter cellular trafficking and

desensitization of the receptor.11 Previous studies have

reported associations between codons 16 and 27 polymorph-

isms and obesity, insulin resistance and hypertension.12–22

Finally, the substitution of isoleucine for threonine at codon

164 (Thr164Ile), in the receptor transmembrane-spanning

domains, alters agonist binding and decreases coupling

of the Gs protein to the receptor.23,24 There is evidence from

in vitro studies that some of these receptor variants might

be important for catecholamine-induced adipocyte lipolysis

in humans.16,25

Furthermore, polymorphisms in G proteins involved in

catecholamine signaling may alter corresponding receptor

and hormone function. Recently, a common polymorphism

substituting a cytosine for a thymine at position 825

(C825T) in exon 10 of the G-Protein b3-subunit (GNB3) gene
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(chromosome 12p13), coding an isoform of the G protein

b subunit (Gb3), has been identified.26 Gs deficiency is also

observed in obesity and the C825T polymorphism is

associated with obesity and hypertension in both white

and non-white populations.27–34 In vitro studies indicated

that the 825T variant of Gb3 in its homozygous form was

associated with a decreased amount of Gb3 in fat cells,

thereby inhibiting signaling through b1-, b2- and a2-adreno-

ceptors, resulting in decreased catecholamine action and

blunted lipolysis in isolated subcutaneous adipocytes of male

and female obese subjects.35

Thus, there are indications that polymorphisms in the

ADRB2 gene and the GNB3 gene may be related to an

impaired in vitro lipolytic response. So far, however, few

in vivo lipolysis studies on these polymorphisms have been

performed. For this reason, the present study investigated

the effect of genetic variation in the ADRB2 and the GNB3

gene on in vivo lipolysis and fat oxidation in overweight and

obese subjects.

Methods

Subjects

The study group consisted of 108 overweight and obese

(BMI range: 26.1–48.4 kg/m2) subjects (43 F/65 M). Twenty-

four overweight subjects (BMI between 25 and 29.9 kg/m2;

11 F/13 M) and 84 obese subjects (BMI429.9 kg/m2;

32 F/52M) were included. The basic selection criteria were

age 20–50 years and BMI425 kg/m2. Exclusion criteria were

weight change 43 kg within 3 months before the study

started, drug-treated hypertension, diabetes or hyperlipide-

mia, thyroid disease, surgically treated obesity, pregnancy,

alcohol or drug abuse and participation in other simulta-

neous ongoing trials. All subjects were recruited by means

of an advertisement in a local newspaper. All subjects

were in good health as assessed by medical history and

physical examination and were not taking any medication.

A normal resting electrocardiogram (ECG) and blood

pressure were a prerequisite for participation. The study

protocol was reviewed and approved by the Medical

Ethical Review Committee of Maastricht University. The

subjects were informed in detail about the investigation

and their consent was obtained before participating in

the study.

Anthropometric measurements

Body weight was determined on an electronic scale, accurate

to 0.1 kg. Waist and hip circumference measurements to

the nearest 1 cm were made with the subjects standing

upright. BMI was calculated as body weight in kilograms

divided by squared height in meters. Body density was

obtained by underwater weighing with residual pulmonary

volume measurement by the helium dilution method

(Volugraph 2000, Mijnhardt) and was converted to percent

body fat using the equation of Siri.36 Fat mass (FM) and

fat-free mass (FFM) were calculated from the percent body fat

and body weight.

Study design

The subjects arrived at the laboratory at 0800 after an

overnight fast (of at least 12 h) by car or public transport.

They were studied while resting supine on a comfortable bed

in a room kept at 23–251C. At the beginning of the

experiment, a catheter was inserted into a forearm vein for

blood sampling. A second catheter was inserted into the

contralateral arm for infusion of the non-selective b-agonist

isoprenaline (ISO). Thirty minutes after insertion of the

catheters, the measurement protocol started. Energy expen-

diture and substrate oxidation were measured during the

entire period with an open-circuit ventilated hood system.

After 30 min, blood was sampled for baseline measurements

and genetic analysis. Following the 30-min baseline

period, ISO infusion started at increasing concentrations

of 6, 12 and 24 ng .kg FFM�1 .min�1, each dose for 30 min.

At the end of each infusion period, venous blood samples

were taken, centrifuged and stored at �801C until further

analysis. During ISO infusion, heart rate was kept under

close observation by means of an ECG. When the heart

rate increased by more than 30 beats/min above baseline

or in case of an irregular heart rhythm, ISO infusion

was stopped.

Genetic analysis

Genomic DNA was extracted from peripheral blood leuko-

cytes by digestion with protein K followed by phenol/

chloroform extraction. Amplification of the relevant

segments of the ADRB2 and GNB3 genes was performed by

polymerase chain reaction (PCR) as previously described.16,35

PCR products were digested at 371C for 1 h using BsrDI,

ItaI, MnlI or BseDI. The digested fragments were visualized

using ethidium bromide staining and UV-transmitted light.

Finally, we evaluated the accuracy of the restriction fragment

length polymorphism (RFLP) method by direct sequencing

of random samples and got 100% agreement. In addition,

two persons independently evaluated samples and identical

results were obtained.

Biochemical analysis

Whole blood was collected in tubes containing ethylene

diamine tetraacetic acid (EDTA) and centrifuged for 10 min

at 3000 rpm (41C) and the plasma removed for the enzymatic

calorimetric quantitation of FFA (NEFA C kit, Wako, Neuss,

Germany) and glycerol (Boehringer, Mannheim, Germany)

on a COBAS FARA centrifugal spectrometer (Roche Diagnos-

tica). Standard samples with known concentrations were

included in each run for quality control.
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Statistical analysis

All statistical calculations were performed with SPSS for

Macintosh (version 11.0; SPSS Inc., Chicago, IL, USA). The

initial statistical analysis, performed for the whole group

(n¼108), indicated a significant gender effect for the Arg16

allele on lipolytic parameters (iAUC DFFA; P¼0.01, allel–

gender interaction) and fat oxidation (iAUC DRQ; P¼0.042).

For this reason, the presented analysis is stratified by gender.

The effect of genotypes on lipolytic responses and fat

oxidation was investigated using analysis of variance

(ANOVA) (adjusted for age and BMI). Post hoc testing was

performed by Student’s unpaired t-test with Bonferroni

correction. Linkage disequilibrium was estimated according

to Devlin et al.37 Diplotype analysis were performed as

described before.38,39 The goodness of fit between observed

and expected genotype frequency (Hardy–Weinberg equili-

brium, HWE) was statistically tested using the w2-test.40

Allele and genotype frequency distributions for the whole

group (n¼ 108) are presented in Table 2. Energy expenditure

(EE) was adjusted for FFM by means of covariance analysis

(ANCOVA). The ISO-induced effect on fat oxidation (RQ),

thermogenesis (EE) and lipolysis (FFA, glycerol) were

expressed as incremental area under the curve (iAUC) above

baseline, calculated according to the trapezium rule. All data

are represented as mean7standard error of the mean

(s.e.m.). Po0.05 was considered as statistically significant.

Power calculation

A power analysis was performed to estimate the sample size

required enabling the accurate and reliable statistical judg-

ments for the two-way parametric statistics. There are little

or no published studies regarding the effect of ADRB2 and

GNB3 gene variants and whole body lipolysis and fat

oxidation, although the results of in vitro studies in human

adipocytes support a major effect. We therefore estimated

our sample size using published data of the effect of b-

adrenergic stimulation on whole body lipolysis and fat

oxidation.4,41,42 Power calculation indicated that to detect

a difference in circulating FFA of 100 mmol/l (with an s.d. of

50 mmol/l) or circulating glycerol of 50 mmol/l (with an s.d. of

25 mmol/l) and a power of 0.80 (a¼0.05 and b¼0.20), the

number of subjects in each group (two-tailed) should be 16.

Results

As mentioned under statistical methods, initial analysis

performed for the whole group (n¼108) indicated a

significant gender effect for the Arg16 allele. For this reason,

the presented analysis is stratified by gender.

Subjects

Anthropometric and metabolic characteristics of the study

subjects are shown in Table 1. Women had significantly

higher percentage body fat, a lower waist–hip ratio and were

significantly younger compared with male participants.

Additionally, women had a significantly higher fasting FFA

level. No significant differences were observed for BMI,

resting EE (adjusted for FFM) and fasting glycerol levels

between genders.

Effect of codon 16 and 27 of the b2-adrenoceptor gene (ADRB2)
on fat oxidation and lipolysis after b-adrenergic stimulation

Allele and genotype frequency distributions for the ADRB2

gene are shown in Table 2. For women, ANOVA analysis

Table 1 Subject characteristics

Men (n¼65) Women (n¼43) P-value

Age (year) 43.371.0 38.871.3 *

BMI (kg/m2) 32.570.5 32.370.6 NS

% body fat 31.770.7 42.470.7 **

WHR 1.0470.01 0.8670.02 **

EE resting (kJ/min) # 5.5670.10 5.7270.13 NS

RQ resting 0.8170.01 0.8270.01 NS

Fasting FFA (mmol/l) 477727 607730 **

Fasting glycerol (mmol/l) 7373 7777 NS

All values are means7s.e.m. Abbreviations: BMI, body mass index; EE, energy

expenditure; FFA, free fatty acids; RQ, respiratory quotient; WHR, waist-to-hip

ratio;,. # EE, adjusted for FFM. *P¼ 0.01, **Po0.001 men vs women using

Student’s unpaired t-test.

Table 2 Allele, genotype and diplotype frequency distributions of the ADRB2

gene and GNB3 gene polymorphisms

n¼108

Allele frequency

Arg16 0.394

Gln27 0.569

Thr164 0.972

C 0.741

Genotype frequency

Gly16Gly (wt) 0.371

Arg16Gly 0.472

Arg16Arg 0.157

Gln27Gln (wt) 0.352

Gln27Glu 0.435

Glu27Glu 0.213

Thr164Thr (wt) 0.944

Thr164Ile 0.056

Ile164Ile 0

CC 0.537

CT 0.407

TT 0.055

Diplotype frequency

Gly16Gly/Glu27Glu 0.185

Gly16Gly/Gln27Gln 0.018

Arg16Arg/Gln27Gln 0.148

Alleles, genotypes and diplotypes are presented as decimals. All SNPs were in

HWE. Abbreviations: Arg, arginine; Gln, glutamic acid; Glu, glutamine; Gly,

glycine; Ile, isoleucine; Thr, threonine; wt, wild type.
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indicated a significant genotype effect for codon 16 and a

blunted increase in FFA (P¼0.046, see Figure 1), glycerol

(P¼ 0.037, see Figure 1) and fat oxidation (P¼0.042, see

Figure 2), even after correction for age and BMI. Post hoc

analysis indicated that in women the Arg16Gly geno-

type was significantly associated with a blunted increase

in circulating FFA (iAUC DFFA after ISO: 379735 vs

493740 mmol/l, P¼0.041, see Figure 1) and glycerol (iAUC

DGlycerol after ISO: 86711 vs 128714 mmol/l, P¼0.026, see

Figure 1) during stimulation compared with female Gly16

homozygotes. In addition to a blunted lipolytic response,

female Arg16Gly heterozygotes showed a blunted increase in

fat oxidation compared with Gly16 homozygotes (iAUC DRQ

after ISO: 0.00470.007 vs –0.01770.008, P¼0.043, see

Figure 2) and a comparable thermogenic response (iAUC

DEE after ISO: 0.5170.07 vs 0.7070.09 kJ/min, NS).

Because lipolytic response and fat oxidation appeared to be

reduced in both Arg16Gly and Arg16Arg carriers, Arg16

heterozygotes and homozygotes were combined into one

group (Arg16GlyþArg16Arg). Female Arg carriers (Arg16-

GlyþArg16Arg) appeared to have a blunted increase in

circulating FFA (382731 vs 493743 mmol/l, P¼0.042)

and glycerol (89710 vs 129718 mmol/l, P¼0.038) after

b-adrenergic stimulation compared with Gly16Gly homo-

zygotes. This altered lipolytic response in female Arg carriers

(Arg16GlyþArg16Arg) was accompanied by a decreased

fat oxidation after stimulation (iAUC DRQ after ISO

0.00370.007 vs �0.01670.005, P¼0.024). No differences

were found in ISO-induced thermogenesis (iAUC DEE after

ISO: 0.5770.07 vs 0.7070.09 kJ/min, NS), body weight, BMI

and other anthropometric variables.

Data in male overweight subjects were less consistent:

ANOVA analysis (adjusted for age and BMI) indicated only a

significant genotype effect of codon 16 and a blunted

increase in FFA (P¼ 0.022, see Figure 1). Post hoc analysis

revealed that male carriers of the Arg16Gly genotype had a

significantly blunted increase in circulating FFA during b-

adrenergic stimulation compared with male Gly16 homo-

zygotes, (266730 vs 401734 mmol/l, P¼0.005; see Figure 1).

However, this blunted FFA response was not accompanied by

a blunted increase in circulating glycerol (see Figure 1) nor a

decreased fat oxidation (iAUC DRQ, see Figure 2). Further-

more, taking Arg16 heterozygotes and homozygotes

together into one group, (Arg16GlyþArg16Arg) carriers

showed a blunted increase in circulating FFA (281721 vs

406741 mmol/l, P¼0.004) compared with Gly16Gly carriers,

whereas ISO-induced changes in glycerol, thermogenesis and

RQ were comparable between groups. Again, no differences

were found in body weight, BMI and other anthropometric

variables.

For neither female nor male subjects associations were

found between genetic variation in codon 27 and 164 of the

b2-adrenoceptor gene (ADRB2) and alterations in fat oxida-

tion or lipolytic response during b-adrenergic stimulation.

Diplotype analysis

Three homozygous and functional diplotypes were investi-

gated in both male and female subjects: Gly16Gly/Glu27Glu,

Arg16Arg/Gln27Gln and Gly16Gly/Gln27Gln. The diplotype

frequency distribution is depicted in Table 2. From the 55

men carrying the Gly16 allele, 47 also carried the Glu27

allele (w2¼32.653, Po0.0001), indicating linkage disequili-

brium (|D0‘|¼0.854, r2¼0.494).37 In 21.5% (n¼14) of the

men and 14% (n¼6) of the women, the Gly16Gly/Glu27Glu

diplotype was apparent. This diplotype was not associated

with a decreased lipolytic response (iAUC DFFA and iAUC

Dglycerol) or fat oxidation (iAUC DRQ) in male or female

Figure 1 Lipolytic response for codon 16 polymorphisms of the ADRB2

gene. All values are means7s.e.m. iAUC DFFA, iAUC Dglycerol: incremental

area under the curve for circulating free fatty acid (FFA) or glycerol

concentration during b-adrenergic stimulation. G16G: Gly16Gly (black bar),

A16G: Arg16Gly (gray bar), A16A: Arg16Arg (white bar). ANOVA (adjusted for

age and BMI): #P¼0.022, ##P¼ 0.046, ###P¼ 0.037. Post hoc Student’s

unpaired t-test: *P¼ 0.005, **P¼ 0.041, ***P¼ 0.026 A16G vs G16G. Number

of subjects in each group is indicated in the bars.

Figure 2 Fat oxidation for codon 16 polymorphisms of the ADRB2 gene. All

values are means7s.e.m. iAUC DRQ: Incremental area under the curve for

delta respiratory quotient (RQ) during b-adrenergic stimulation. G16G:

Gly16Gly (black bar), A16G: Arg16Gly (gray bar), A16A: Arg16Arg (white

bar). ANOVA (adjusted for age and BMI): #P¼0.042. Post hoc Student’s

unpaired t-test: *P¼0.043 G16G vs A16G. Number of subjects in each group

is indicated in the bars.
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subjects. Nevertheless, female carriers (n¼6) of the

Gly16Gly/Glu27Glu diplotype had lower fasting FFA levels

(431749 vs 636732 mmol/l, Po0.05) compared with female

non-carriers (n¼37). No differences were found in body

weight, BMI and other anthropometric variables. The

other two diplotypes (Arg16Arg/Gln27Gln and Gly16Gly/

Gln27Gln) were also not associated with an altered fat

oxidation, thermogenic or lipolytic response in this popula-

tion. Owing to the relatively low sample size, we were not

able to identify b2-adrenoceptor haplotypes for codons 16,

27 and 164 with a frequency 45%.

Effect of the C825T polymorphism in exon 10 of the G protein
beta-3 subunit (GNB3) gene on fat oxidation and lipolysis

Allele and genotype frequency distributions for the GNB3

gene are shown in Table 2. Male TT carriers (n¼4) showed a

tendency toward a blunted increase in circulating FFA (iAUC

DFFA after ISO: 173746 vs 435732 mmol/l) and glycerol

(iAUC DGlycerol after ISO: 47714 vs 10778 mmol/l) after

b-adrenergic stimulation compared with CT carriers (n¼29).

Similar results were obtained for male CC carriers (n¼32).

Unfortunately, the number of subjects in the TT group

(n¼4) were too small to perform statistical analysis. In

female overweight subjects, no associations were found for

the C825T polymorphism and an altered lipolytic response,

thermogenesis or fat oxidation.

Discussion

To the best of our knowledge, this is the first study to

investigate the association between genetic variability in the

ADRB2 gene and GNB3 gene and in vivo lipolysis and fat

oxidation in overweight and obese men and women.

The major findings of our study are as follows: firstly,

genetic variability in codon 16 of the ADRB2 gene was

associated with a blunted increase in circulating FFA and

glycerol during b-adrenergic stimulation with the non-

selective ISO in female subjects. In male subjects, codon 16

was associated with a blunted ISO-induced increase in FFA,

whereas no difference in glycerol was apparent. In female

subjects, this blunted lipolytic response was also accompa-

nied with a reduced fat oxidation. Finally, the TT genotype of

the GNB3 gene was associated with a blunted increase in FFA

and glycerol in male subjects. This blunted lipolytic response

was not accompanied by a reduced fat oxidation.

Large et al.16 showed that the Arg16Gly genotype was

associated with an in vitro fivefold increase in agonist

sensitivity of the b2-adrenoceptor in abdominal subcuta-

neous adipocytes of overweight female subjects, without any

significant effect on glycerol release. In our study, the Arg16

allele was associated with blunted ISO-induced responses in

FFA, glycerol and fat oxidation (iAUC DRQ) in women and a

blunted increase in FFA in men. The reason for this apparent

discrepancy with our findings may be related to the

differences in our in vivo vs the in vitro approach to study

lipolysis. In the in vitro situation, in vivo factors like the

neuroendocrine environment and local adipocyte blood

flow are not taken into account. In addition, the majority

of in vitro studies are performed on adipocytes derived from

the subcutaneous region in both genders. It should be

mentioned that there are major differences in catechola-

mine-induced lipolysis between depots (subcutaneous vs

visceral and gluteofemoral) and also gender differences in

body fat distribution.43–45 Our data indicate that variability

in codon 16 of the ADRB2 gene may contribute to a reduced

in vivo b-adrenoceptor-mediated lipolysis and fat oxidation,1–4

indicating that these blunted responses may be important

primary factors in obesity.

Besides looking at individual codons, we also studied

the effect of diplotypes. We chose to study two common

(410% in the population) and one less common (o5%)

homozygous combination (Gly16Gly/Glu27Glu, Arg16Arg/

Gln27Gln and Gly16Gly/Gln27Gln), as they have been

reported to have a significant effect on lipolysis.38 In

addition, these SNPs belong to the same pathway and

transfection experiments showed that they are functional.39

Finally, in our population, as has been reported before, there

is strong linkage disequilibrium between codons 16 and 27.46

Nevertheless, no effect of diplotypes on lipolytic, thermo-

genic response or fat oxidation was found in our study.

Only the Gly16Gly/Glu27Glu diplotype was associated

with a lower fasting FFA concentration in female over-

weight subjects, which may possibly reflect a reduced

rate of lipolysis in subcutaneous adipose tissue.47 Finally,

literature suggests that the Thr164Ile b2-adrenoceptor

polymorphism is closely associated with Gly at position

16 and Gln at position 27.39,48 Nevertheless, due to the

relatively low sample size, we were not able to identify

b2-adrenoceptor haplotypes for codons 16, 27 and 164 with a

frequency 45%.38

The observed genotype frequency for the polymorphism

in the GNB3 gene was similar to that previously reported in

other Caucasian populations.26,31 Rydén et al.35 showed that

the T variant of this polymorphism was associated with a

blunted in vitro responsiveness for the non-selective ISO in

abdominal subcutaneous adipocytes of male and female

overweight subjects. In contrast with Ryden et al.35 we found

a tendency toward a reduced lipolysis aney in male over-

weight subjects. It should be mentioned that our sample has

no adequate power to provide a conclusive result about a

genotype effect for the C825T polymorphism in the GNB3

gene. Thus, further studies are necessary to confirm our in

vivo findings in a larger population.

In summary, variation in codon 16 of the ADRB2 gene is

associated with an impaired lipolytic response in male and

female overweight and obese subjects and by a blunted fat

oxidation in overweight and obese women. In conclusion,

the present results suggest that genetic variability in the

ADRB2 gene influences lipolysis regulation in vivo in over-

weight and obese subjects and that this is subject to gene–
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gender interactions. This indicates that genetic variability

in the ADRB2 gene may be an important factor in the

development or progression of obesity and obesity-related

disorders.
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