62 research outputs found

    Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice

    No full text
    The osteoclast is vital for establishment of normal hematopoiesis in the developing animal. However, its role for maintenance of hematopoiesis in adulthood is more controversial. To shed more light on this process, we transplanted hematopoietic stem cells from two osteopetrotic mouse models, with lack of osteoclasts or defective osteoclast function, to normal adult mice and examined the bone phenotype and hematopoiesis in the recipients. B6SJL mice were lethally irradiated and subsequently transplanted with oc/oc, Receptor Activator of Nuclear Factor Kappa B knockout or control fetal liver cells. Osteoclasts derived from the recipient animals were tested in vitro for osteoclastogenesis and resorptive function. Bone remodeling changes were assessed using biomarkers of bone tumrnover and micro-CT. Hematopoiesis was assessed by flow cytometry and colony formation, and hematopoietic stem cell function by secondary competitive transplantations and cell cycle analysis. After transplantation, a donor chimerism of 97-98% was obtained, and by 15 weeks mild osteopetrosis had developed in recipients of cells from osteopetrotic mice. There were no alterations in the number of bone marrow cells. Colony formation was slightly reduced in Receptor Activator of Nuclear Factor Kappa B knock-out recipients but unchanged in oc/oc recipients. Phenotypically, stem cells were marginally reduced in recipients of cells from osteopetrotic mice, but no significant difference was seen in cell cycle status and in competitive secondary transplantations all three groups performed equally well. Our results indicate that osteoclast function is not crucial for hematopoietic stem cell maintenance in adult mice

    In Situ Mass Spectrometry Imaging and Ex Vivo Characterization of Renal Crystalline Deposits Induced in Multiple Preclinical Drug Toxicology Studies

    Get PDF
    Drug toxicity observed in animal studies during drug development accounts for the discontinuation of many drug candidates, with the kidney being a major site of tissue damage. Extensive investigations are often required to reveal the mechanisms underlying such toxicological events and in the case of crystalline deposits the chemical composition can be problematic to determine. In the present study, we have used mass spectrometry imaging combined with a set of advanced analytical techniques to characterize such crystalline deposits in situ. Two potential microsomal prostaglandin E synthase 1 inhibitors, with similar chemical structure, were administered to rats over a seven day period. This resulted in kidney damage with marked tubular degeneration/regeneration and crystal deposits within the tissue that was detected by histopathology. Results from direct tissue section analysis by matrix-assisted laser desorption ionization mass spectrometry imaging were combined with data obtained following manual crystal dissection analyzed by liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy. The chemical composition of the crystal deposits was successfully identified as a common metabolite, bisulphonamide, of the two drug candidates. In addition, an un-targeted analysis revealed molecular changes in the kidney that were specifically associated with the area of the tissue defined as pathologically damaged. In the presented study, we show the usefulness of combining mass spectrometry imaging with an array of powerful analytical tools to solve complex toxicological problems occurring during drug development.De tvÄ första författarna delar förstaförfattarskapet.De tvÄ sista författarna delar sistaförfattarskapet.</p

    A Comparison of Osteoclast-Rich and Osteoclast-Poor Osteopetrosis in Adult Mice Sheds Light on the Role of the Osteoclast in Coupling Bone Resorption and Bone Formation

    No full text
    Osteopetrosis due to lack of acid secretion by osteoclasts is characterized by abolished bone resorption, increased osteoclast numbers, but normal or even increased bone formation. In contrast, osteoclast-poor osteopetrosis appears to have less osteoblasts and reduced bone formation, indicating that osteoclasts are important for regulating osteoblast activity. To illuminate the role of the osteoclast in controlling bone remodeling, we transplanted irradiated skeletally mature 3-month old wild-type mice with hematopoietic stem cells (HSCs) to generate either an osteoclast-rich or osteoclast-poor adult osteopetrosis model. We used fetal liver HSCs from (1) oc/oc mice, (2) RANK KO mice, and (3) compared these to wt control cells. TRAP5b activity, a marker of osteoclast number and size, was increased in the oc/oc recipients, while a significant reduction was seen in the RANK KO recipients. In contrast, the bone resorption marker CTX-I was similarly decreased in both groups. Both oc/oc and Rank KO recipients developed a mild osteopetrotic phenotype. However, the osteoclast-rich oc/oc recipients showed higher trabecular bone volume (40 %), increased bone strength (66 %), and increased bone formation rate (54 %) in trabecular bone, while RANK KO recipients showed only minor trends compared to control recipients. We here show that maintaining non-resorbing osteoclasts, as opposed to reducing the osteoclasts, leads to increased bone formation, bone volume, and ultimately higher bone strength in vivo, which indicates that osteoclasts are sources of anabolic molecules for the osteoblasts
    • 

    corecore