32 research outputs found
Recommended from our members
Geographic transmission hubs of the 2009 influenza pandemic in the United States
A key issue in infectious disease epidemiology is to identify and predict geographic sites of epidemic establishment that contribute to onward spread, especially in the context of invasion waves of emerging pathogens. Conventional wisdom suggests that these sites are likely to be in densely-populated, well-connected areas. For pandemic influenza, however, epidemiological data have not been available at a fine enough geographic resolution to test this assumption. Here, we make use of fine-scale influenza-like illness incidence data derived from electronic medical claims records gathered from 834 3-digit ZIP (postal) codes across the US to identify the key geographic establishment sites, or “hubs”, of the autumn wave of the 2009 A/H1N1pdm influenza pandemic in the United States. A mechanistic spatial transmission model is fit to epidemic onset times inferred from the data. Hubs are identified by tracing the most probable transmission routes back to a likely first establishment site. Four hubs are identified: two in the southeastern US, one in the central valley of California, and one in the midwestern US. According to the model, 75% of the 834 observed ZIP-level outbreaks in the US were seeded by these four hubs or their epidemiological descendants. Counter-intuitively, the pandemic hubs do not coincide with large and well-connected cities, indicating that factors beyond population density and travel volume are necessary to explain the establishment sites of the major autumn wave of the pandemic. Geographic regions are identified where infection can be statistically traced back to a hub, providing a testable prediction of the outbreak's phylogeography. Our method therefore provides an important way forward to reconcile spatial diffusion patterns inferred from epidemiological surveillance data and pathogen sequence data. Keywords: Pandemic influenza, Transmission hubs, Metapopulation, Gravity model, Phylogeograph
Recommended from our members
Spatial Transmission of 2009 Pandemic Influenza in the US
The 2009 H1N1 influenza pandemic provides a unique opportunity for detailed examination of the spatial dynamics of an emerging pathogen. In the US, the pandemic was characterized by substantial geographical heterogeneity: the 2009 spring wave was limited mainly to northeastern cities while the larger fall wave affected the whole country. Here we use finely resolved spatial and temporal influenza disease data based on electronic medical claims to explore the spread of the fall pandemic wave across 271 US cities and associated suburban areas. We document a clear spatial pattern in the timing of onset of the fall wave, starting in southeastern cities and spreading outwards over a period of three months. We use mechanistic models to tease apart the external factors associated with the timing of the fall wave arrival: differential seeding events linked to demographic factors, school opening dates, absolute humidity, prior immunity from the spring wave, spatial diffusion, and their interactions. Although the onset of the fall wave was correlated with school openings as previously reported, models including spatial spread alone resulted in better fit. The best model had a combination of the two. Absolute humidity or prior exposure during the spring wave did not improve the fit and population size only played a weak role. In conclusion, the protracted spread of pandemic influenza in fall 2009 in the US was dominated by short-distance spatial spread partially catalysed by school openings rather than long-distance transmission events. This is in contrast to the rapid hierarchical transmission patterns previously described for seasonal influenza. The findings underline the critical role that school-age children play in facilitating the geographic spread of pandemic influenza and highlight the need for further information on the movement and mixing patterns of this age group
Measles on the Edge: Coastal Heterogeneities and Infection Dynamics
Mathematical models can help elucidate the spatio-temporal dynamics of epidemics as well as the impact of control measures. The gravity model for directly transmitted diseases is currently one of the most parsimonious models for spatial epidemic spread. This model uses distance-weighted, population size-dependent coupling to estimate host movement and disease incidence in metapopulations. The model captures overall measles dynamics in terms of underlying human movement in pre-vaccination England and Wales (previously established). In spatial models, edges often present a special challenge. Therefore, to test the model's robustness, we analyzed gravity model incidence predictions for coastal cities in England and Wales. Results show that, although predictions are accurate for inland towns, they significantly underestimate coastal persistence. We examine incidence, outbreak seasonality, and public transportation records, to show that the model's inaccuracies stem from an underestimation of total contacts per individual along the coast. We rescue this predicted ‘edge effect’ by increasing coastal contacts to approximate the number of per capita inland contacts. These results illustrate the impact of ‘edge effects’ on epidemic metapopulations in general and illustrate directions for the refinement of spatiotemporal epidemic models
Identifying the Age Cohort Responsible for Transmission in a Natural Outbreak of Bordetella bronchiseptica
Identifying the major routes of disease transmission and reservoirs of infection are needed to increase our understanding of disease dynamics and improve disease control. Despite this, transmission events are rarely observed directly. Here we had the unique opportunity to study natural transmission of Bordetella bronchiseptica – a directly transmitted respiratory pathogen with a wide mammalian host range, including sporadic infection of humans – within a commercial rabbitry to evaluate the relative effects of sex and age on the transmission dynamics therein. We did this by developing an a priori set of hypotheses outlining how natural B. bronchiseptica infections may be transmitted between rabbits. We discriminated between these hypotheses by using force-of-infection estimates coupled with random effects binomial regression analysis of B. bronchiseptica age-prevalence data from within our rabbit population. Force-of-infection analysis allowed us to quantify the apparent prevalence of B. bronchiseptica while correcting for age structure. To determine whether transmission is largely within social groups (in this case litter), or from an external group, we used random-effect binomial regression to evaluate the importance of social mixing in disease spread. Between these two approaches our results support young weanlings – as opposed to, for example, breeder or maternal cohorts – as the age cohort primarily responsible for B. bronchiseptica transmission. Thus age-prevalence data, which is relatively easy to gather in clinical or agricultural settings, can be used to evaluate contact patterns and infer the likely age-cohort responsible for transmission of directly transmitted infections. These insights shed light on the dynamics of disease spread and allow an assessment to be made of the best methods for effective long-term disease control
Mean daily temperature (C) at the Kagoshima tea station in Japan
Mean daily temperature (C) at the Kagoshima tea station in Japa
Adult densities of Adoxophyes honmai in Japan
The data are adult counts of Adoxophyes honmai from a light trap at the Kagoshima tea research station in Japan
Data from: Recurrent insect outbreaks caused by temperature-driven changes in system stability
Insect species often undergo regular outbreaks in population density, but identifying the causal mechanism for such outbreaks in any particular species has proven difficult. Here we show that outbreak cycles in the tea tortrix Adoxophyes honmai can be explained by temperature-driven changes in system stability. Wavelet analysis of a 51yr time series spanning over 200 outbreaks reveals a threshold in outbreak amplitude each spring when temperature exceeds 15°C, and a secession of outbreaks each fall as temperature decreases. This is in close agreement with our independently parameterized mathematical model that predicts the system crosses a Hopf bifurcation from stability to sustained cycles as temperature increases. These results suggest that temperature can alter system stability and provide an explanation for generation cycles in multivoltine insects