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A B S T R A C T

A key issue in infectious disease epidemiology is to identify and predict geographic sites of epidemic estab-
lishment that contribute to onward spread, especially in the context of invasion waves of emerging pathogens.
Conventional wisdom suggests that these sites are likely to be in densely-populated, well-connected areas. For
pandemic influenza, however, epidemiological data have not been available at a fine enough geographic re-
solution to test this assumption. Here, we make use of fine-scale influenza-like illness incidence data derived
from electronic medical claims records gathered from 834 3-digit ZIP (postal) codes across the US to identify the
key geographic establishment sites, or “hubs”, of the autumn wave of the 2009 A/H1N1pdm influenza pandemic
in the United States. A mechanistic spatial transmission model is fit to epidemic onset times inferred from the
data. Hubs are identified by tracing the most probable transmission routes back to a likely first establishment
site. Four hubs are identified: two in the southeastern US, one in the central valley of California, and one in the
midwestern US. According to the model, 75% of the 834 observed ZIP-level outbreaks in the US were seeded by
these four hubs or their epidemiological descendants. Counter-intuitively, the pandemic hubs do not coincide
with large and well-connected cities, indicating that factors beyond population density and travel volume are
necessary to explain the establishment sites of the major autumn wave of the pandemic. Geographic regions are
identified where infection can be statistically traced back to a hub, providing a testable prediction of the out-
break's phylogeography. Our method therefore provides an important way forward to reconcile spatial diffusion
patterns inferred from epidemiological surveillance data and pathogen sequence data.

1. Introduction

Recent years have seen a surge in the use of mathematical models to
describe the geographic transmission of infectious diseases (Colizza
et al., 2007b; Tatem, 2014; Riley et al., 2015). A central goal is to
identify “hotspots” of spread, be they individuals who dis-
proportionately contribute to transmission within a population
(Galvani and May, 2005; Paull et al., 2012), or cities or countries that
act as sites where an epidemic first becomes established (that is, where
sustained chains of transmission first take hold) (Legrand et al., 2009;
Levy et al., 2011; Yang et al., 2015b). Identifying hotspots can help
guide surveillance and intervention efforts that may prevent or slow the
spread of disease transmission (Skene et al., 2014; Russell et al., 2008).

An important type of geographic hotspot is the ‘hub’, which is a site of
epidemic establishment that contributes substantially to the onward
geographic spread of a disease. Specifically, a hub may be defined as a
location where (a) an outbreak occurs due to the establishment of a
long-distance pathogen introduction from outside the population,
which then (b) contributes significantly to onward spatial spread within
the population. Hubs may be contrasted with ‘sources’, which are sites
where a new genetic variety of a pathogen first emerges (Viboud et al.,
2013), and also from ‘superspreaders’, which are sites that spread in-
fection to many immediate neighbors – though all three may sometimes
coincide. Transmission hubs are often thought to coincide with loca-
tions with high connectivity and population density (Xia et al., 2004;
Ferguson et al., 2006). For influenza, however, this association has not
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been tested, nor has any data-validated mechanistic identification of
transmission hubs at the country scale been performed.

The increased availability of geo-tagged epidemiological data now
makes such a mechanistic analysis possible. In particular, electronic
medical claims records (EMRs) offer a so-far underutilized source of
large-volume syndromic influenza-like illness (ILI) data. Though the
specificity of EMRs for diagnosing influenza is lower than the specificity
of laboratory-based tests, EMRs give reliable estimates of influenza
epidemic timing, especially when compared with data derived from
social media and Internet search platforms like Twitter and Google
(Viboud et al., 2014; Lampos et al., 2010; Carneiro and Mylonakis,
2009; Olson et al., 2013). EMRs are available at a high enough geo-
graphic resolution to perform robust statistical analyses on influenza
transmission at a range of spatial scales (Viboud et al., 2014; Gog et al.,
2014).

To trace chains of infection geographically, it is necessary to infer
the relative onset times of local outbreaks. For time series data, a range
of outbreak detection algorithms exist. However, most have been de-
veloped to either detect the presence of an epidemic during some time
interval (but not necessarily its precise timing) (Held et al., 2006;
Pelecanos et al., 2010), or to provide early warning of an unfolding
outbreak (Hashimoto et al., 2000; Wagner et al., 2001; Abeku et al.,
2004; Won et al., 2017). Few exist that are specifically tailored to detect
epidemic onset time after an outbreak has occurred (see Gog et al.,
2014; Charu et al., 2017 for two examples), possibly because epide-
miological data at a sufficiently detailed geographic resolution have so
far not been available to motivate this sort of inference. There remains a
need to refine and systematically compare the outbreak onset detection
algorithms that do exist, to determine which most reliably detects
outbreak onset times from retrospective time series data.

Influenza genetic sequences offer an alternative data stream for
inferring geographic disease transmission patterns. Integrating epide-
miological and phylogenetic inferences is an important emerging area
of research (Grad and Lipsitch, 2014). Some previous studies have
successfully combined these data streams at the global scale (Kilpatrick
et al., 2006; Lycett et al., 2012), but at the continental scale and
smaller, the task has proven difficult, possibly due to a lack of genomic
data at sufficient geographic resolution (Viboud et al., 2013).

In this article, we identify key drivers of geographic transmission of
the autumn wave of the 2009 A/H1N1pdm influenza outbreak in the
United States using a mechanistic mathematical model, based on Gog
et al. (2014). The model is fit to outbreak onset times inferred from
medical insurance claims data collected during outpatient visits in 834
3-digit ZIP codes across the US. We then apply a Markov strategy to
probabilistically trace the inferred transmission routes backwards in
time and identify the transmission hubs of the outbreak. Tracing on-
ward spread from the hubs yields a testable prediction for the phylo-
geographic structure of the outbreak, opening the possibility of refining
the inference of geographic transmission chains and transmission hubs
using combined genetic and epidemiological data.

2. Methods

2.1. Data

Data for this analysis come from a convenience sample of electronic
medical claims forms (type CMS-1500) submitted by primary care
physicians across the US and maintained by IMS Health (originally SDI
Health). Each claim is associated with a single outpatient visit, and
includes one or more ICD-9 codes (Moriyama et al., 2011) listed by the
physician that describe the patient's illness. The overall sample is
thought to capture over 50% of all outpatient visits in the US in 2009
(Viboud et al., 2014). The records are binned weekly, and aggregated
geographically by the first three digits of the ZIP (postal) code of the
practice from which they are submitted (U.S. Postal Service Office of
Inspector General, 2013). These three-digit ZIP codes will be referred to

simply as ‘ZIPs’ (not to be confused with the finer five- or ten-digit ZIP
codes, also assigned to many mailing addresses in the US (Moriyama
et al., 2011)). Time series of weekly influenza-like illness (ILI) incidence
are created by extracting claims with a direct mention of influenza, or
fever combined with a respiratory symptom, or febrile viral illness
(ICD-9 487-488 OR [780.6 and (462 or 786.2)] OR 079.99), following
Viboud et al. (2014). For each ZIP, the number of ILI cases in each week
is divided by the total number of patients who visited a physician in
that ZIP during that week, yielding an ‘ILI ratio’ time series. There are
884 ILI ratio time series, one for each ZIP in the lower 48 US states,
each spanning 52 weeks from the week commencing 4 Jan 2009
through the week commencing 27 Dec 2009. 50 ZIPs are excluded from
further analysis due to excessive noise (see ‘Definition of epidemic
onset’). The remaining 834 time series will be referred to as the IMS-ILI
dataset, following Viboud et al. (2014).

The correspondence between the IMS-ILI dataset and reference in-
fluenza surveillance data from the US Centers for Disease Control and
Prevention (CDC) is described in depth by Viboud et al. (2014). In brief,
the weekly incidence and peak timing of outbreaks in the IMS-ILI da-
taset both correlate highly with the weekly incidence and peak timing
from CDC ILI and CDC virologic surveillance data at the regional level.
Correlations for both metrics remain strong when the IMS-ILI data are
compared with city-level ILI data from New York State. City-level
correlations outside New York State could not be assessed, due to a lack
of reference data. Taken together, this suggests that the IMS-ILI data
provide reliable information about epidemic timing by geographic re-
gion in the US (Viboud et al., 2014).

Population sizes and geographic coordinates for the ZIPs are avail-
able from the US Census Gazetteer files (United States Census Bureau,
2015). The Gazetteer files partition data into finer five-digit postal
codes, so the three-digit ZIP population sizes are calculated by summing
the population sizes of all constituent five-digit codes, and the three-
digit ZIP coordinates are obtained by taking the population-weighted
mean of the coordinates of the constituent five-digit codes. There are 21
ZIPs with population size smaller than 20,000 that we omit from the
analysis (see Fig. S2). City names for each ZIP are available from the
United States Postal Service (United States Postal Service, 2018). These
names are not necessarily unique: a single name may apply to multiple
ZIPs, since a city can be partitioned into multiple ZIPs. We will always
refer to ZIPs both by their three-digit number, which is a unique
identifier, and by their associated city name.

Data on school start dates are available at the state level from Chao
et al. (2010). In Alabama, Florida, Georgia, Mississippi, and South
Carolina, the five states near the apparent epicenter of the outbreak in
the eastern US, school start dates are available at the finer district level
(also from Chao et al. (2010)). Most ZIPs contain multiple school dis-
tricts, so we define the ZIP-level school start date to be the median of all
district start dates within that ZIP. We repeated the full analysis below
using the earliest, rather than the median, district-level school start date
within each ZIP; the form of the optimal transmission model and the
final set of transmission hubs were unchanged.

2.2. Definition of epidemic onset

At least two strategies exist for explicitly inferring outbreak onset
times from retrospective ILI incidence time series (Charu et al., 2017;
Gog et al., 2014). The first strategy, the “threshold method” from Gog
et al. (2014), defines the onset time of an influenza outbreak as the first
of three consecutive weeks in which ILI incidence in a given location
surpasses a sinusoidal baseline fit to the ILI incidence between influenza
seasons. This is similar in strategy to many outbreak detection methods
used for real-time epidemic surveillance (Abeku et al., 2004; Hashimoto
et al., 2000; Wagner et al., 2001; WHO Global Influenza Programme
Surveillance and Epidemiology team, 2012; Won et al., 2017) and is
closely related to the threshold method used by Eggo et al. (2011).
Though conceptually straightforward, defining baselines and thresholds
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can be difficult and somewhat ad hoc (Centers for Disease Control and
Prevention, 2016; Shmueli and Burkom, 2010). The second strategy,
the “breakpoint method” introduced by Charu et al. (2017), takes a
fundamentally different approach. It estimates epidemic onset time as
the changepoint in the slope of a bi-linear trend fit to an ILI time series
in the n weeks preceding the epidemic peak, where n is a parameter
chosen by the modeler. This avoids the need to define a baseline, and
provides a natural way of characterizing uncertainty in the onset esti-
mate (see SI §1.1). A full mathematical specification of the breakpoint
method is given in SI §1. A simulation-based side-by-side evaluation of
the breakpoint method and a version of the threshold method adapted
from Gog et al. (2014) demonstrates that the breakpoint method yields
onset estimates with greater accuracy and precision than the threshold
method (see SI §1.2).

To infer ZIP-level outbreak onset times from the 2009 IMS-ILI data,
the breakpoint method is implemented by fitting a bi-linear trend to
each ZIP's ILI ratio time series in the n=17 weeks prior to and in-
cluding the week of peak incidence in that ZIP. The week of peak in-
cidence is defined as the week in which the maximum ILI ratio is
reached, between 5 July 2009 and 27 Dec 2009. The choice of 17 weeks
provides enough data points to give a robust onset estimate, while
avoiding the tail end of the spring infection wave that affected a
number of locations. The onset date is defined as the maximum like-
lihood estimate of the breakpoint in the bi-linear trend, rounded to the
nearest half-week, following Gog et al. (2014) and Charu et al. (2017).
Uncertainty is assessed using the log-likelihood profile of the break-
point onset estimate. ZIPs with uncertain onset times, defined here as
those for which the log-likelihood profile of the breakpoint estimate
does not drop by at least 2 units, undergo a second fitting procedure to
determine whether a more precise onset estimate might be obtained
using ‘alternate’ peaks (see SI §1.1). If the breakpoint log-likelihood
profile still does not drop by at least 2 units after this adjustment, the
ZIP is omitted from further analysis. There are 29 of these omitted ZIPs,
depicted geographically in Fig. S2. This leaves 834 ZIPs for further
analysis. The breakpoint method is illustrated in Fig. 1 on the ILI ratio
time series for ZIP 606 (Chicago IL) and the nearby ZIP 538 (Madison
WI). Breakpoint onset times for the 834 ZIPs are depicted geo-
graphically in Fig. 2. An exploratory analysis of the breakpoint onset
times and their uncertainties is presented in SI §1.3.

2.3. Mechanistic transmission model

The transmission model considered here is based on the most par-
simonious model selected by Gog et al. (2014). It is defined as

= + +
∑
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∈

≠

λ t β β Iβ N
N κ d

N κ d
( ) ( )

( )

( )
i d i

μ j j
ν

j i j
ν0 ds

Λ ij

ij
ϵ

(1)

where λi(t) is the force of infection on location i at time t; I is an in-
dicator function that is 1 if schools are in session in location i at time t
and is 0 otherwise; Ni and Nj are the population sizes of locations i and j,
divided by average population size over all locations; Λ is the set of
infected locations at time t; and dij is the great circle distance in kilo-
meters between locations i and j. Time t is treated as a discrete variable,
with units of one half week. The parameter β0 accounts for force from
external seeding; βd and βds together define a local transmission factor
that is modulated by schools being in session; μ and ν define how the
force of infection relates to the population sizes of the recipient and
donor locations, respectively; and ϵ adjusts the normalization term
accounting for population density around location i. The function κ(dij)
is a kernel describing how the force of infection decays with the dis-
tance between ZIPs. Two kernels are tested: a power kernel, with form

= −κ d d( ) ,γ
ij ij (2)

and an exponential kernel, with form

= −κ d d ρ( ) Exp[ / ],ij ij (3)

where γ and ρ are parameters that describe how quickly the kernel
decays with distance. Power kernels generally decay less quickly at long
distances than exponential kernels (see Fig. S14), so we expect that a
power kernel will capture transmission dynamics with many long-dis-
tance jumps of infection, while an exponential kernel will capture
highly localized transmission dynamics. The transmission model given
by Eq. (1) is a version of the ‘gravity model’, since it describes the
coupling between geographic locations as a function of their population
sizes and the distance between them (Gog et al., 2014; Wilson, 1970;
Eggo et al., 2011; Truscott and Ferguson, 2012).

Given model parameters Θ={β0, βd, βds, μ, ν, γ, ϵ} or Θ={β0, βd,
βds, μ, ν, ρ, ϵ}, the probability that a location i becomes infected at time
Ti is

∏= − −
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−
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1
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following Eggo et al. (2011). Hence, the probability of observing the
full set of onsets T={T1, T2, …, Tn} is a product across all n locations:

Fig. 1. Illustration of the breakpoint method for determining time of epidemic
onset. These time series (dotted lines) depict the weekly ILI ratios for ZIP 606
(Chicago IL) and the nearby ZIP 538 (Madison WI) in 2009. ZIP 606 is one of
the largest ZIPs considered (pop. 2.8 million), and ZIP 538 is one of the smallest
(pop. 58,000). A bi-linear trend (red) is fit to the 17 weeks of the time series
(solid black) prior to and including the week of peak incidence. The onset date
is defined as the maximum likelihood estimate of the breakpoint in the bi-linear
trend, rounded to the nearest half-week. The blue curve below the time series
depicts the likelihood profile for the breakpoint onset. This curve describes
uncertainty in the breakpoint estimate. For ZIP 606, the distribution is narrow,
indicating a high degree of certainty in the onset estimate. For ZIP 538, the
distribution is wider and bimodal. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of the article.)
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2.3.1. Model fit
Model parameters are estimated using maximum likelihood. The

log-likelihood of the model parameters Θ given the breakpoint epi-
demic onset times T={T1, …, Tn} for locations 1, …, n is
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The parameter values that maximize Eq. (6) are calculated using the
Nelder-Mead simplex algorithm, as implemented in MATLAB's fmin-
search(). The fits of nested sub-models, obtained by setting various
parameters to ‘null’ values and re-fitting the parameters, are compared
using the Akaike Information Criterion (AIC) (Burnham and Anderson,
2004), which finds an optimal tradeoff between fit and parsimony by
rewarding models with higher likelihood and penalizing models with
many parameters. Models with lower AIC are considered more optimal.
Table 1 gives the relative AIC values for a representative set of nested
models derived from Eq. (1). For the models represented in Table 1, βds
and ν are fixed at their null values of 0, since this always yields a more
optimal model (see Table S3). Table S3 gives values of the AIC values
for all possible nested models. The optimal model in terms of AIC uses
the exponential kernel with full density dependence (ϵ=1), and does
not select effects from schools (βds) or from donor population size (ν).
The resulting model is
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Parameter values for this model are given in Table 2. A validation of
this model, including forward epidemic simulations and an evaluation
of the model's sensitivity to onset detection method, spatial resolution,
and perturbations in epidemic onset times, is provided in the SI §3.

2.4. Identification of epidemic hubs

A key property of the transmission model is that, for a given ZIP i,
the force of infection contributed by each ZIP j is additive, and therefore
separable. Define λi,j, the force on ZIP i from ZIP j at i's time of onset
(Ti), as
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The total force of infection on ZIP i at its time of onset can be written as
the sum of these components:
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This is equivalent to the transmission model given in Eq. (7).
The independent contributions λi,j can be visualized as a transmis-

sion network, as depicted in Fig. 3A. ZIPs are represented by nodes
(circles), connected with arrows that indicate possible transmission
pathways. In addition, n ‘seeding states’ (clouds) are introduced, each of
which exerts a force of β0 on a single ZIP. Conceptually, there is really
just one common source of external seeding that exerts a constant force
of β0 on all ZIPs. However, as discussed later in this section, this
strategy of separating the force from external seeding into a unique
state for each ZIP makes it possible to infer the probability that a spe-
cific external seeding event caused any particular outbreak.

To identify epidemic hubs, transmission chains are traced back to
their point of first introduction. This is done by reversing the direction
of the transmission network and noting that, with the proper normal-
izations, the resulting ‘reverse transmission network’ represents a
Markov chain for which the probability of transitioning from state i to
state j is equivalent to the probability that ZIP i was infected by ‘parent’
ZIP j. From this perspective, stepping backwards through the trans-
mission network is equivalent to taking subsequent powers of the
Markov chain's transition matrix. In the limit as these powers approach
infinity, the i, jth entry of the exponentiated transition matrix gives the

Fig. 2. Epidemic onsets for the 834 three-digit ZIP codes. Disc
area is proportional to the ZIP's population size. The earliest
outbreaks are depicted in green/yellow, and the latest in purple/
blue. A major epidemic wave emanated out of the southeastern
United States, with a possible second seeding event in California.
(For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)

Table 1
ΔAIC values for nested sub-models of the geographic transmission model, Eq.
(1). Sub-models represented here allow ϵ and μ to be either free or fixed at a null
value, and fix βds= ν=0, using the power (Eq. (2)) and exponential (Eq. (3))
kernels. The optimal model is normalized to have a ΔAIC of 0.

ϵ μ ΔAIC Power ΔAIC Exponential

Free Free 281.0 0.5
Free 0 320.4 36.0
1 Free 311.7 0
1 0 380.1 38.6
0 Free 599.6 345.0
0 0 606.9 366.5

Table 2
Fitted parameter values for the optimal transmission model, Eq. (7).

Parameter Description Units Value 95% confidence
interval

β0 Background transmission
rate

(Δt)−1 0.00040 (0.00014,
0.00083)

βd Spatial transmission
coefficient

(Δt)−1 0.77 (0.71, 0.84)

μ Exponent of dependence on
recipient population size

None 0.23 (0.16, 0.30)

ρ Characteristic distance for
the exponential kernel

km 96 (85, 110)
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probability that the outbreak in ZIP i was initially triggered by a seeding
event in ZIP j, under the assumed transmission model.

To illustrate the procedure, refer again to the idealized outbreak
depicted in Fig. 3. Reversing the arrows in Diagram A gives the reverse
transmission network (Diagram B), where each arrow now points to-
ward a possible contributor of infection. The transition probabilities are
denoted

= =τ P j i i T
λ

λ T
(transmission from to | is infected at time )

( )i j i
i j

i i
,

,

and

= =σ P i i T
β

λ T
(external seeding in | is infected at time )

( )
.i i

i i

0

The τi,j represent the probability that the outbreak in ZIP i came from
parent ZIP j, and the σi represent the probability that the outbreak in
ZIP i was directly due to a seeding event.

Define τn×n to be the matrix whose i, jth entry is τi,j. Note that
τi,j=0 for all j≥ i, so τ is strictly lower triangular. Also define σn×n to
be the matrix with σ1, σ2, …, σn along the diagonal and with zeros
elsewhere. The transition matrix M2n×2n that describes the reverse
transmission network can be written using these matrices:

= ( )σ τM I 0 .

The first n elements of the state space of M correspond to the seeding
states (clouds in Fig. 3), and the remaining n elements correspond to the
ZIPs. EntryMi,j is the probability that ‘parent’ element j directly sparked
element i's outbreak (or, equivalently, the probability that the reverse
transmission process transitions from element i to element j). The
identity matrix in the upper left block indicates that the seeding states
are ultimate sources of infection; they can only transition to themselves.
Similarly, the 0 matrix in the upper right block indicates that trans-
mission cannot occur from a ZIP to a seeding state. The σ matrix in the
lower left block captures the probability of a seeding event in each ZIP.
The τ matrix in the lower right captures the transmission probabilities
between ZIPs. Note that, as required, the row sums of M all equal 1.

The pth power of M contains the probabilities of transitioning be-
tween any two nodes via p− 1 intermediate steps. Finding the ultimate
ancestor of each location's outbreak, then, requires calculating

≡
→∞

∞M Mlim
p

p . Since τ is strictly lower triangular (has zeros along its

diagonal), τm= 0 for m≥ n+1. Thus, Mm=M∞ for m≥ n+1,
yielding

= ⎛
⎝ + + + …

⎞
⎠

∞
τ τ σM I 0

I 0( ) .2

Element ∞M( )i j, gives the probability that seeding state j was the ulti-
mate source of the outbreak in ZIP i. The identity matrix in the upper
left block indicates that seeding states are sources unto themselves, as
constructed. Each ZIP's ultimate source is a seeding state, since the
ZIP→ ZIP transitions in the lower-right block of the matrix all go to

zero. The lower-left block ofM∞ contains the values of greatest interest.
Denote this block Pn×n≡ (I+ τ+ τ2+…)σ. The entries Pi,j are the
probabilities that external seeding (force from β0) in ZIP j ultimately led
to an outbreak in ZIP i. The row sums ∑jPi,j equal 1 for all j. The column
sums of P, denoted Cj= ∑iPi,j, can be interpreted as the expected
number of outbreaks triggered by seeding in ZIP j. Any ZIP i for which
the associated seeding state has Ci > 41.7=0.05N, where N=834 is
the number of ZIPs (i.e. seeding in the location triggered outbreaks in
effectively 5% or more of the observed locations), and where σi > 0.3
(i.e. there is a greater than 30% chance that the location's outbreak was
caused by external seeding), is classified as a hub.

3. Results

3.1. Drivers of local transmission

The optimal transmission model (Eq. (7)) includes significant effects
from recipient population size, population density, and geographic
distance. Maximum likelihood parameter values for this model are
listed in Table 2. In agreement with Gog et al. (2014), donor population
size is not selected as a significant driver of geographic influenza
transmission (that is, ν is fixed at zero in the optimal model). In contrast
to Gog et al. (2014), school start dates are not selected as key drivers of
geographic influenza transmission (that is, βds is fixed at zero in the
optimal model), though this finding should be interpreted with care
(see Section 4).

3.2. Epidemiological coupling between cities decays exponentially with
distance

A power law is the most common choice of distance kernel for the
gravity model (Zipf, 1946; Wilson, 1970; Truscott and Ferguson, 2012).
However, for this analysis of the autumn 2009 A/H1N1pdm influenza
outbreak in the United States, a more quickly-decaying exponential
kernel provides a significantly better fit (see Table 1 and Table S3). This
reinforces the importance of short-range transmission over long-dis-
tance jumps of infection in the geographic spread of the autumn 2009
A/H1N1pdm influenza pandemic wave.

3.3. Hubs of the autumn wave of the 2009 A/H1N1pdm influenza
pandemic in the US

We identify four transmission hubs of the autumn 2009 A/
H1N1pdm influenza outbreak in the United States. The two hubs that
triggered the greatest effective number of onward infections lie in the
southeastern US, in Georgia and Mississippi. The hubs that triggered the
third and fourth greatest effective number of onward infections lie in
the central valley of California and in eastern Nebraska, respectively.
The four hubs, the effective number of outbreaks C that each triggered,
and associated information are listed in Table 3, and are depicted
geographically in Fig. 4 (boxes).

Fig. 3. Forward transmission network (A) and reverse transmis-
sion network (B) for an idealized outbreak taking place on three
ZIPs. Circles represent ZIPs, and clouds represent ‘seeding states’
that capture infective force that cannot be explained by gravity-
driven local transmission. The outbreak begins in ZIP 1, then in-
fects ZIP 2, and finally infects ZIP 3, in three subsequent time
steps. In Diagram A, arrows denote possible transmission paths,
and arrow labels give the infective force at time of infection. In
Diagram B, arrows point toward possible ‘parent’ outbreaks, and
arrow labels give the probability that the ZIP at the tip of the
arrow directly sparked the outbreak in the ZIP at the tail of the
arrow. Definitions of the arrow weights are given in Section 2. In
this simplified setting, ZIP 1 would be a hub, since the outbreaks

in ZIPs 2 and 3 can be traced back to the seeding state attached to ZIP 1 with high probability. The hub calculation procedure accounts for ZIP 1's direct influence on
ZIPs 2 and 3, as well as its indirect influence on ZIP 3 via ZIP 2.
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The forward transmission triggered by each hub can be mapped
geographically. Fig. 4 depicts the probability that each ZIP's outbreak
came from any given hub. Each hub is assigned a color, and then each
ZIP is assigned a hue in proportion to the probability that its outbreak
came from that hub. The colors are allowed to mix, to capture mixed
influence from multiple hubs. Fig. 4 therefore illustrates the most likely
forward coalescence of the transmission chains from each hub. For
example, the ZIP-level outbreaks in California can all be traced back
with high probability to the hub in Stockton, CA. In the northeast, on
the other hand, the most likely points of origin are Grenada, MS and
Albany, GA, as indicated by the purple hue. The results underlying this
map offer a link between population-level and genetic-level influenza
data streams. It is reasonable to believe that outbreaks in locations with
similar hues may have been colonized by genetically-related viruses,
due to the likelihood of the virus’ common point of origin. The inferred
transmission chains may therefore reflect the phylogeographic structure
of the autumn 2009 H1N1pdm outbreak in the United States. This
structure could be tested and refined with sufficiently resolved genetic
data.

Though four ZIPs are pinpointed here as transmission hubs of the
autumn 2009 A/H1N1pdm influenza outbreak, the precise identity of
the hubs is subject to some uncertainty. Re-identifying the hubs using
onset times randomly drawn from the breakpoint likelihood profiles,
rather than the maximum likelihood onset times, sometimes yields a
different set of hubs. Normally, these new hubs lie geographically close
to the four hubs identified here (see Fig. S39). When accounting for
onset uncertainty, ZIPs 389 (Grenada), 398 (Albany), and 952
(Stockton) are still almost always chosen as hubs, and when they are
not, the hubs that replace them still normally lie in the southeastern US
and in the central valley of California (see SI §6). So, while we cannot
say definitively that the 2009 A/H1N1pdm influenza pandemic first
became established in the four ZIPs listed in Table 3, there is good
evidence that there were important establishment events in the south-
eastern US and in the central valley of California.

It does not appear that the hubs of the 2009 A/H1N1pdm influenza
pandemic were in major cities, contrasting with the hypothesis that
epidemic establishment should normally take place in well-connected

and densely-populated areas. This counter-intuitive distribution of hubs
does not appear to be due to a bias in data or methods. One might
expect ZIPs with smaller population sizes to have noisier ILI time series,
which might cause the onset detection method to mistakenly identify
earlier epidemic onsets in smaller ZIPs than in larger ones. A scatter
plot depicting epidemic onset vs. population size, however, reveals
little relationship between onset time and ZIP population size (Fig. S7).
The linear regression trend line has a negative slope (R=−0.21,
p < 10−4), suggesting that smaller ZIPs tend to have later, not earlier,
onsets than larger ZIPs. Also, plotting the 95% onset confidence interval
vs. population size for all ZIPs shows that there is no relationship be-
tween ZIP population size and onset uncertainty (Fig. S9). The largest
onset uncertainties are observed in Los Angeles, San Francisco, and
New York City (Fig. S8). Finally, for simulated outbreaks, the break-
point method reliably estimates epidemic onset time even when the
epidemic time series is noisy (see Section 2 and Fig. S6). So, it is un-
likely that the observed set of hubs can be explained by artifacts from
the data.

Furthermore, the transmission hubs are fairly robust to geographic
data resolution. The IMS-ILI data are also available at a coarser spatial
resolution, aggregated geographically by Sectional Center Facility
(SCF), rather than by 3-digit ZIP. The SCF-level data have been con-
sidered previously (Gog et al., 2014; Charu et al., 2017). At the SCF
level, Grenada MS, Albany GA, and Stockton CA are again identified as
transmission hubs with the same relative ordering in C, while Omaha
NE is replaced by Ashland KY (see SI §6).

4. Discussion

This is the first study to infer the sites of establishment from long-
distance introductions of pandemic A/H1N1pdm influenza virus within
the United States using a mechanistic epidemiological model. This was
made possible by fine-scale medical claims data made available by IMS
Health, and by an improved geographic transmission model for the
spread of the autumn 2009 A/H1N1pdm influenza outbreak in the US.
These refinements respectively provided the precision and accuracy
needed to identify the hubs of the autumn wave of the 2009 pandemic
in the US. Our method follows in the spirit of previous work that aims to
locate the transmission hubs of an epidemic (Legrand et al., 2009; Levy
et al., 2011; Yang et al., 2015b), but has the advantages that it accounts
for the actual sequence of infected cities rather than assuming general
diffusive spread, has guaranteed convergence once the underlying
transmission model is specified, and does not assume a fixed number of
introduction sites a priori.

Contrasting with conventional wisdom, all four hubs lie in mid-sized
cities, not in the highly-connected urban centers that are often asso-
ciated with outbreak establishment. While it is likely that air travel
played an important role in disseminating the 2009 A/H1N1pdm virus
both internationally and within the US during the early spring wave

Table 3
Hubs of the autumn 2009 A/H1N1pdm pandemic wave in the United States.
Columns give the ZIP number, name, population size, effective number of on-
ward outbreaks triggered (C), probability that the hub's outbreak was due to
external seeding (σ), and the outbreak onset date as estimated by the breakpoint
method, for each hub.

ZIP Name Pop. size C σ Onset date

389 Grenada, MS 113,782 339.3 1.00 23 Jul
398 Albany, GA 111,263 155.0 0.55 26 Jul
952 Stockton, CA 508,759 78.9 1.00 26 Jul
681 Omaha, NE 573,828 51.3 0.99 2 Aug

Fig. 4. Basins of infection for the four hubs listed in Table 3.
Hubs are outlined with boxes. Box area is proportional to the
number of outbreaks that seeding in the hub triggered through
gravity-driven onward transmission. Each hub j is assigned a
color (the color of the surrounding box), and then all locations
i are colored with intensity proportional to the probability Pij

that hub j sparked its outbreak (see Section 2). The prevailing
black in California indicates that outbreaks in that state can be
chiefly attributed to the hub in Stockton, CA. The purple in the
eastern US indicates mixing of transmission chains seeded
from Grenada, MS (blue) and Albany, GA (red). (For inter-
pretation of the references to color in this figure legend, the
reader is referred to the web version of the article.)
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(Cooper et al., 2006; Colizza et al., 2007a), these results indicate that
other critical ingredients are needed to explain the spatial introduction
patterns of the autumn wave of the pandemic in the continental US.

One reason why the four observed transmission hubs do not corre-
spond to major urban centers could be simply that the majority of the
US population does not reside in cities. To illustrate this, it is necessary
to shift attention away from ZIPs, which do not generally reflect an
especially epidemiologically or socially relevant partition of the US
population. The 2010 US Census’ definition of an incorporated place
(United States Census Bureau, 2015) corresponds more directly to the
common notion of a city. There are 26 incorporated places in the US
with population size greater than 600,000 (just over the size of the
largest hub). These cities account for less than a fifth (15.5%) of the
total US population. So, a given city-dweller would need over five-fold
higher odds of sparking an epidemic than a non-city-dweller, for the
probability of observing a transmission hub in a city to exceed that of
observing a transmission hub elsewhere.

Previous immunity, school onsets, and meteorological effects may
have tipped the balance further toward early outbreak establishment in
these four hubs. An early wave of A/H1N1pdm influenza struck some
major US cities, including New York and Chicago, between April and
June of 2009, and may have conferred some immunity on those cities’
populations. A protective effect from this underlying immunity could
not be detected in previous analysis by Gog et al. (2014), and so was not
considered here, but we cannot rule out the possibility that underlying
immunity had some influence on the geographic placement of the hubs.
The mixing of children in schools at the start of the autumn school term
may also have increased the likelihood of epidemic establishment. Chao
et al. (2010) provide evidence of this at the state level. Though the start
of the autumn school term was not selected here as a key driver of
short-distance influenza transmission (further discussion on this point
to follow), it is possible that mixing in schools may have facilitated the
establishment of long-distance jumps of infection. Importantly, the
median school start dates in Grenada MS and Albany GA precede the
school start date in Atlanta GA (the nearest large city) by one half week
and one week, respectively. Furthermore, a cluster of six ZIPs sur-
rounding and including Albany GA (and excluding Atlanta) had the
country's earliest school start dates in the autumn of 2009. Though the
difference in school term timing between this cluster and Atlanta is
slight (about one-half to one week), this could explain why Albany,
rather than Atlanta, was an epicenter of transmission for the eastern
half of the US. More detailed data is needed to determine whether si-
milar differences in school term timing are associated with the other
hubs.

Meteorological factors such as humidity may have influenced the
geography of the hubs. Ambient absolute humidity has been linked to
the survival and subsequent transmissibility of the influenza virus
(Lipsitch and Viboud, 2009; Shaman et al., 2011). Indeed, Shaman et al.
(2011) correctly predicted a third pandemic wave in the southeastern
US based on a spatiotemporal model of the effective reproductive
number RE driven by absolute humidity. The results presented here
show that the southeast also played a crucial role in the spread of the
second (autumn) pandemic wave, since the two most influential hubs
lie in that region. This warrants further investigation of meteorological
effects that may have predisposed the southeast to outbreak establish-
ment in 2009.

It is impossible to identify or assess the importance of international
hubs using the present dataset. This may especially affect inferences for
the southwestern United States, since a major H1N1pdm outbreak was
also occurring in the central and northern states of Mexico during the
autumn of 2009 (Chowell et al., 2011). For example, the influenza
activity in southern California, which is currently traced with high
probability to the hub in Stockton (see Fig. 4), might be explained
better by some unobserved hub just across the US-Mexico border. This
issue highlights the need for fine-scale influenza incidence data that can
be compared across national boundaries.

The transmission model considered here, Eq. (7), departs from the
model developed by Gog et al. (2014) in three important ways. First,
the present model is fit to data of a finer geographic resolution, the 3-
dight ZIP, rather than the SCF. SCFs, like ZIPs, are designations made by
the United States Postal Service, and consist of 2–3 3-digit ZIPs on
average. To our knowledge, the analysis presented here represents the
finest-scale mechanistic spatial model of influenza in the United States,
though other investigations into different aspects of influenza trans-
mission have considered data at a similar spatial scale (Yang et al.,
2015a; Rumoro et al., 2014).

Second, we find that an exponential distance kernel captures the
spatial dynamics of the autumn 2009 A/H1N1pdm influenza outbreak
than a more traditional power kernel. In Gog et al. (2014), and in many
gravity model-based descriptions of human mobility, a power kernel is
used (Eggo et al., 2011; Xia et al., 2004; Mills and Riley, 2014). On the
other hand, an exponential kernel is considered in Batty and Sikdar
(1982), Gatto et al. (2012), and a few studies include some treatment of
both (Liu et al., 2015; Ubøe, 2004; Truscott and Ferguson, 2012). In the
present analysis, the exponential kernel is preferred heavily over the
power kernel (see Table 1). It is difficult to justify a priori any one form
of distance kernel over another. The preference of the exponential
kernel is evidence that, on the whole, short-distance spread was the
dominant mode of transmission of the 2009 A/H1N1pdm pandemic
within the US. This reinforces the central role of short-range trans-
mission during the 2009 pandemic, and as raised in Gog et al. (2014),
this could be indicative of the importance of children as they have more
localized mobility patterns. Data for the movement of children in the
US is still lacking, but recent work in the UK suggests that school age
children typically travel shorter distances each day than adults (Klepac
et al., 2018). The strong preference for the exponential kernel observed
here also provides evidence that power kernels should not necessarily
be used as the ‘null’ assumption in spatial disease transmission models.

The third departure from Gog et al. (2014) regards the rejection of
the start of the autumn school term as a predictor of short-distance
transmission. At first glance, this is surprising, since schools in the US
open in a south-to-north pattern (Fig. S27), much like the trajectory of
the autumn 2009 pandemic wave, and since the outbreaks in the
southeast coincided closely with the start of the autumn school term in
that region (see Fig. S28). Empirical evidence also suggests that the
mobility patterns of children may change significantly between term-
time and vacation (Kucharski et al., 2015). However, the autumn 2009
pandemic wave lagged well behind the ‘wavefront’ of opening schools,
such that the onset of the influenza outbreak in some locations in the
northeast occurred up to eight weeks after the start of the school term in
that region. So, the mixing of children in schools did not drive the
spatial transmission of the influenza pandemic, so much as it provided
‘fertile ground’ for the pandemic to spread in its own time, which is not
as easily detected by the model. Interestingly, if school start dates are
advanced by one week, the result is a model with slightly better AIC
than Eq. (7) (a 3-point improvement), that retains an effect from school
start dates (see SI §4). This could provide evidence that mixing in
children up to a week before the start of the autumn school term con-
tributed to the spatial transmission of influenza. A virtually equivalent
one-week shift was implicitly included in the transmission model pre-
sented by Gog et al. (2014), since the threshold outbreak onset detec-
tion method introduces an artificial 0.5- to 1-week bias toward later
onsets (see Fig. S6). It is difficult to draw a clear conclusion on the role
of schools using the present dataset and model, but fortunately, a clear
conclusion need not be drawn here; the set of hubs is identified, with
the same relative importances, whether using the transmission model
Eq. (7) (without school start dates) or Eq. (S.6) (with one-week-ad-
vanced school start dates).

Geographic incidence data make it possible to identify pathogen
establishment sites, as in this study and in Yang et al. (2015b). A
complementary approach for inferring establishment sites uses genetic
data instead, as in Lycett et al. (2012) and Lu et al. (2014). Linking
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epidemiological and virological observations has proven difficult for
human influenza (Viboud et al., 2013). The methods presented here
may help bridge the gap by providing a spatially-detailed, testable
hypothesis of the mixing patterns one might expect to see in spatially-
referenced sequence data. First, one would need to test whether the
phylogeographic patterns obtained from the influenza genomic data
collected from 2009 (as from FluDB (National Institute of Allergy and
Infectious Diseases, 2016) and GenBank (National Center for
Biotechnology Information, 2016)) resemble the basins of infection
depicted in Fig. 4. Then, the genomic data could be used to refine the
reconstruction of between-city transmission chains, and to determine
possible links between the long-distance jumps that led to epidemic
establishment in the hubs. Combining the data streams in this way
would shed more light on the true transmission network of the 2009
pandemic, improving in turn our ability to develop effective and effi-
cient interventions for future outbreaks.
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