1,875 research outputs found

    Constraints on the Spin Evolution of Young Planetary-Mass Companions

    Get PDF
    Surveys of young star-forming regions have discovered a growing population of planetary-mass (<13 M_Jup) companions around young stars. There is an ongoing debate as to whether these companions formed like planets (that is, from the circumstellar disk), or if they represent the low-mass tail of the star formation process. In this study we utilize high-resolution spectroscopy to measure rotation rates of three young (2-300 Myr) planetary-mass companions and combine these measurements with published rotation rates for two additional companions to provide a look at the spin distribution of these objects. We compare this distribution to complementary rotation rate measurements for six brown dwarfs with masses <20 M_Jup, and show that these distributions are indistinguishable. This suggests that either that these two populations formed via the same mechanism, or that processes regulating rotation rates are independent of formation mechanism. We find that rotation rates for both populations are well below their break-up velocities and do not evolve significantly during the first few hundred million years after the end of accretion. This suggests that rotation rates are set during late stages of accretion, possibly by interactions with a circumplanetary disk. This result has important implications for our understanding of the processes regulating the angular momentum evolution of young planetary-mass objects, and of the physics of gas accretion and disk coupling in the planetary-mass regime.Comment: 31 pages, 10 figures, published in Nature Astronomy, DOI:10.1038/s41550-017-0325-

    Lepton-mediated electroweak baryogenesis

    Get PDF
    We investigate the impact of the tau and bottom Yukawa couplings on the transport dynamics for electroweak baryogenesis in supersymmetric extensions of the Standard Model. Although it has generally been assumed in the literature that all Yukawa interactions except those involving the top quark are negligible, we find that the tau and bottom Yukawa interaction rates are too fast to be neglected. We identify an illustrative "lepton-mediated electroweak baryogenesis" scenario in which the baryon asymmetry is induced mainly through the presence of a left-handed leptonic charge. We derive analytic formulae for the computation of the baryon asymmetry that, in light of these effects, are qualitatively different from those in the established literature. In this scenario, for fixed CP-violating phases, the baryon asymmetry has opposite sign compared to that calculated using established formulae.Comment: 26 pages, 5 figure

    FLUORESCENCE AND CIRCULAR DICHROISM STUDIES ON THE PHYCOERYTHROCYANINS FROM THE CYANOBACTERIUM

    Get PDF
    Two phycoerythrocyanin (PEC) fractions have been obtained from the phycobilisomes of the cyanobac-terium Westiellopsis prolifica ARM 365. They have been characterized by absorption, fluorescence and circular dichroism spectroscopy. One of them is spectroscopically similar to a PEC trimer known from other organisms. Whereas efficient energy transfer from its violin (α-84) to the cyanin (β-84, 155) chromophores is efficient in the trimer (αβ it is impeded after dissociation to the monomer (α,β). A second fraction of PEC which we earlier termed PEC(X) (Maruthi Sai et al., Photochem. Photobiol. 55,119–124, 1992), exhibited the spectral properties similar to that of the α-subunit of PEC from Mastigocladus laminosus. With this highly photoactive fraction, the circular dichroism spectra of the violobilin chromophore in both photoreversible states were obtained

    TWO DIFFERENT TYPES OF PHOTOCHEMISTRY IN PHYCOERYTHROCYANIN α-SUBUNIT

    Get PDF
    The photochemical activities of phycoerythrocyanin α-subunits from Mastigocladus laminosus separated by isoelectric focusing were tested by irradiating at 500, 550, 577 and 600 nm. Two types of photoreversible photochromic responses have been characterized by absorption and absorption difference spectroscopy. Type I is the well-known absorption shift from 571 to 506 nm. Type II is a new response characterized by a line-broadening of the 570 nm absorption

    PHOTOCHEMISTRY OF PHYCOBILIPROTEINS

    Get PDF
    Native PEC from the cyanobacterium, Mastigocladus laminosus, and its isolated α-subunit show photoreversibly photochromic reactions with difference-maxima around 502 and 570 nm in the spectral region of the α-84 phycoviolobilin chromophore. (b) Native PEC and its β-subunit show little if any reversible photochemistry in the 600–620 nm region, where the phycocyanobilin chromophores on the β-subunit absorb maximally, (c) Reversible photochemistry is retained in ureadenatured PEC at pH = 7.0 or pH ≤ 3. The difference maxima are shifted to 510 and 600 nm, and the amplitudes are decreased. An irreversible absorbance increase occurs around 670 nm (pH ≤ 3). (d) The amplitude of the reversible photoreaction difference spectrum is maximum in the presence of 4–5 M urea or 1 M KSCN, conditions known to dissociate phycobiliprotein aggregates into monomers. At the same time, the phycocyanobilin chromophore(s) are bleached irreversibly, (e) The amplitude becomes very small in high aggregates, e.g. in phycobilisomes. (f) In a reciprocal manner, the phototransformation of native PEC leads to a reversible shift of its aggregation equilibrium between trimer and monomer. The latter is favored by orange, the former by green light, (g) It is concluded that the phycoviolobilin chromophore of PEC is responsible for reversible photochemistry in PEC, and that there is not only an influence of aggregation state on photochemistry, but also vice versa an effect of the status of the chromophore on aggregation state. This could constitute a primary signal in the putative function as sensory pigment, either directly, or indirectly via the release of other polypeptides, via photodynamic effects, or the like

    A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies

    Get PDF
    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz ([superscript 1]H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE[subscript 011] resonator acts as both an NMR coil and microwave resonator, and a double balanced ([superscript 1]H, [superscript 13]C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on [superscript 1]H, and 50 kHz on [superscript 13]C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).National Institutes of Health (U.S.) (EB002804)National Institutes of Health (U.S.) (EB002026)National Institutes of Health (U.S.) (EB001965)National Institutes of Health (U.S.) (EB004866)Deutsche Forschungsgemeinschaft (Postdoctoral Fellowship

    Coupled-mode theory for Bose-Einstein condensates

    Full text link
    We apply the concepts of nonlinear guided-wave optics to a Bose-Einstein condensate (BEC) trapped in an external potential. As an example, we consider a parabolic double-well potential and derive coupled-mode equations for the complex amplitudes of the BEC macroscopic collective modes. Our equations describe different regimes of the condensate dynamics, including the nonlinear Josephson effect for any separation between the wells. We demonstrate macroscopic self-trapping for both repulsive and attractive interactions, and confirm our results by numerical simulations.Comment: 4 pages, 5 figures; typos removed, figures amended; submitted to PR

    Human Adaptability for Deep Space Missions: An Exploratory Study

    Get PDF
    The present qualitative study conducts in-depth interviews with astronauts and other subject matter experts in order to shed light on human adaptability in extreme environments. Deep space travel will entail a range of highly stressful conditions to which astronauts must adapt. Feelings of isolation will be increased, as the space traveler is farther from Earth for longer periods of time. Daily life will take place in small and confined areas, for durations extending into years. The dangers of the extreme environment of space are ever-present, and failure of critical equipment or components can lead to death. Astronauts will need to function more autonomously, with diminished support from Earth. It is thus important to select and train future astronauts who are able to adapt to such extreme and variable conditions and continue to function effectively. Subject matter experts identify the central adaptive challenges faced by crewmembers, and what are the key individual attributes associated with human adaptability. Results also point to organizational factors, as well as several coping and resource strategies that can be applied to improve human adaptability to extreme environments and missions. These results can be used to inform selection and training programs, as well as the design of space vehicles, systems, and habitats in order to enhance astronaut adaptive task performance

    Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films: part I: absorption

    Get PDF
    In this and the following paper (parts I and II, respectively), we systematically study the interactions between surface plasmons of metal nanoparticles (NPs) with excitons in thin-films of organic media. In an effort to exclusively probe near-field interactions, we utilize spherical Ag NPs in a size-regime where far-field light scattering is negligibly small compared to absorption. In part I, we discuss the effect of the presence of these Ag NPs on the absorption of the embedding medium by means of experiment, numerical simulations, and analytical calculations, all shown to be in good agreement. We observe absorption enhancement in the embedding medium due to the Ag NPs with a strong dependence on the medium permittivity, the spectral position relative to the surface plasmon resonance frequency, and the thickness of the organic layer. By introducing a low index spacer layer between the NPs and the organic medium, this absorption enhancement is experimentally confirmed to be a near field effect In part II, we probe the impact of the Ag NPs on the emission of organic molecules by time-resolved and steady-state photoluminescence measurements
    • …
    corecore