75 research outputs found

    Discovery of a New Dusty B[e] Star in the Small Magellanic Cloud

    Get PDF
    We present new optical spectroscopic and archival Spitzer IRAC photometric observations of a B-type star in the SMC cluster NGC 346, NGC 346:KWBBe 200. We detect numerous Fe II, [O I], and [Fe II] lines, as well as strong P-Cygni profile H I emission lines in its optical spectrum. The star's near-IR color and optical to IR SED clearly indicate the presence of an infrared excess, consistent with the presence of gas and warm, T ~800 K, circumstellar dust. Based on a crude estimate of the star's luminosity and the observed spectroscopic line profile morphologies, we find that the star is likely to be a B-type supergiant. We suggest that NGC 346:KWBBe 200 is a newly discovered B[e] supergiant star, and represents the fifth such object to be identified in the SMC.Comment: 12 pages, accepted by Ap

    Ultraviolet properties of IRAS-selected Be stars

    Get PDF
    New IUE observations were obtained of 35 Be stars from a list of stars which show excess infrared fluxes in IRAS data. The IRAS-selected Be stars show larger C IV and Si IV equivalent widths than other Be stars. Excess C IV and Si IV absorption seems to be independent of spectral type for IRAS-selected Be stars later than spectral type B4. This is interpreted as evidence for a possible second mechanism acting in conjunction with radiation pressure for producing the winds in Be stars. No clear correlation of IR excess of v sin i with C IV or Si IV equivalent widths is seen, although a threshold for the occurrence of excess C IV and Si IV absorption appears at a v sin i of 150 km/sec

    Disk-Loss and Disk Renewal Phases in Classical Be Stars II. Detailed Analysis of Spectropolarimetric Data

    Full text link
    In Wisniewski et al. 2010, paper I, we analyzed 15 years of spectroscopic and spectropolarimetric data from the Ritter and Pine Bluff Observatories of 2 Be stars, 60 Cygni and {\pi} Aquarii, when a transition from Be to B star occurred. Here we anaylize the intrinsic polarization, where we observe loop-like structures caused by the rise and fall of the polarization Balmer Jump and continuum V-band polarization being mismatched temporally with polarimetric outbursts. We also see polarization angle deviations from the mean, reported in paper I, which may be indicative of warps in the disk, blobs injected at an inclined orbit, or spiral density waves. We show our ongoing efforts to model time dependent behavior of the disk to constrain the phenomena, using 3D Monte Carlo radiative transfer codes.Comment: 2 pages, 6 figures, IAU Symposium 27

    Disk Loss and Disk Renewal Phases in Classical Be Stars I: Analysis of Long-Term Spectropolarimetric Data

    Full text link
    (Abridged) Classical Be stars occasionally transition from having a gaseous circumstellar disk (''Be phase'') to a state in which all observational evidence for the presence of these disks disappears (''normal B-star phase''). We present one of the most comprehensive spectropolarimetric views to date of such a transition for two Be stars, pi Aquarii and 60 Cygni. 60 Cyg's disk loss episode was characterized by a monotonic decrease in emission strength over a time-scale of 1000 days, consistent with the viscous time-scale of the disk, assuming alpha is 0.14. pi Aqr's disk loss was episodic in nature and occurred over a time-scale of 2440 days. An observed time lag between the behavior of the polarization and H-alpha in both stars indicates the disk clearing proceeded in an ''inside-out'' manner. We determine the position angle of the intrinsic polarization to be 166.7 +/- 0.1 degrees for pi Aqr and 107.7 +/- 0.4 degrees for 60 Cyg, and model the observed polarization during the quiescent diskless phase of each star to determine the interstellar polarization along the line of sight. Minor outbursts observed during the quiescent phase of each star shared similar lifetimes as those previously reported for mu Cen, suggesting that the outbursts represent the injection and subsequent viscous dissipation of individual blobs of material into the inner circumstellar environments of these stars. We also observe deviations from the mean intrinsic polarization position angle during polarization outbursts in each star, indicating deviations from axisymmetry. We propose that these deviations might be indicative of the injection (and subsequent circularization) of new blobs into the inner disk, either in the plane of the bulk of the disk material or in a slightly inclined (non-coplanar) orbit.Comment: 30 pages, 14 figures; accepted in Ap

    Probing the Geometry and Circumstellar Environment of SN 1993J in M81

    Get PDF
    We have monitored the polarized radiation of the Type IIb SN 1993J in M81 over a period of 41 days, starting from 7 days after the explosion on 1993 March 27.5 (UT). Our data show clear evidence that the intrinsic continuum polarization of SN 1993J evolved from being essentially negligible on April 3-4, to a peak value of ~ 1% in late April 1993, and started to decline by the middle of May. The polarized flux spectrum in late April strongly resembled spectra of Type Ib supernovae, with prominent He I lines but redshifted ~ 3380 km/s relative to the total flux spectrum. These data are consistent with models of Hoflich; they suggest that the polarization was most likely produced by either an asymmetric helium core configuration of material and/or flux, or scattering from an asymmetric circumstellar distribution of dusty material. A combination of electron and dust scattering, as well as a clumpy or stratified distribution of the emitting gas, are possible as the polarization mechanism of the continuum and emission lines. The latter interpretation is supported by the fact that 1-2 months after the explosion, the observed rotations of polarization position angle across prominent line features remain even after correction for effects of interstellar polarization. This indicates that emission lines of He I, Fe II, [O I], and H are all intrinsically polarized at position angles different from that of the continuum, with the non-Balmer lines generally being most highly polarized. If the supernova had an oblate geometry, our data are consistent with a small viewing angle (i.e., more or less equator-on), although the degree of asphericity that gave rise to the polarization at early times is probably smaller (minor to major axis ratio > 0.7) than has been previously suggested.Comment: 27 pages, 14 figures to be published in "Publ. Astron. Soc. Pac.", May 199

    Near-Contemporaneous Optical Spectroscopic and Infrared Photometric Observations of Candidate Herbig Ae/Be Stars in the Magellanic Clouds

    Full text link
    We present near-IR (J,H,Ks) photometry for 27 of the 28 candidate Herbig Ae/Be stars in the Small and Large Magellanic Clouds identified via the EROS1 and EROS2 surveys as well as near-contemporaneous optical (H-alpha) spectroscopy for 21 of these 28 candidates. Our observations extend previous efforts to determine the evolutionary status of these objects. We compare the IR brightness and colors of a subset of our sample with archival ground-based IR data and find evidence of statistically significant photometric differences for ELHC 5, 7, 12, 18, and 21 in one or more filter. In all cases, these near-IR photometric variations exhibit a grey color as compared to earlier epoch data. The ~1 magnitude IR brightening and minimal change in the H-alpha emission strength we observe in ELHC 7 is consistent with previous claims that it is a UX Ori type HAe/Be star, which is occasionally obscurred by dust clouds. We also detect a ~1 magnitude IR brightening of ELHC 12, but find little evidence of a similar large-scale change in its H-alpha line strength, suggesting that its behavior could also be caused by a UX Ori-like event. The ~0.5 magnitude IR variability we observe for ELHC 21, which also exhibited little evidence of a change in its H-alpha emission strength, could conceivably be caused by a major recent enhancement in the density of the inner disk region of a classical Be star. We also report the first near-IR photometry for two ESHC stars and the first H-alpha spectroscopy for one ELHC and five ESHC stars. Although H-alpha emission is detected in all of these new observations, they do not exhibit a strong near-IR excess. It is therefore possible that many of these objects may be classical Be stars rather than Herbig Ae/Be stars.Comment: Accepted in A

    Spectroscopic and Spectropolarimetric Observations of V838 Mon

    Get PDF
    The spectroscopic and spectropolarimetric variability of the peculiar variable V838 Monocerotis during the brighter phases of its multiple outbursts in 2002 is presented. Significant line profile variability of Hα\alpha and Si II 6347.10\AA & 6371.36\AA occurred in spectra obtained between 2002 February 5 and 2002 March 14, and a unique secondary absorption component was observed near the end of this time period. Our observations also suggest that multiple shifts in ionization states occurred during the outbursts. Spectropolarimetric observations reveal that V838 Mon exhibited both intrinsic and interstellar polarization components during the initial stages of the second outburst, indicating the presence of an asymmetric geometry; however, the intrinsic component had significantly declined by February 14. We determine the interstellar polarization to be Pmax=2.746±0.011P_{max} = 2.746 \pm 0.011 %, λmax=5790±37A˚\lambda_{max} = 5790 \pm 37\AA, PA=153.43±0.12∘PA = 153.43 \pm 0.12 ^{\circ} , and we find the integrated intrinsic V band polarization on February 5 to be P=0.983±0.012P = 0.983 \pm 0.012 % at a position angle of 127.0±0.5∘127.0 \pm 0.5^{\circ}. The implications of these observations for the nature of V838 Monocerotis, its distance, and its ejecta are discussed.Comment: 20 pages (including 6 figs, 3 tables), accepted by Ap
    • …
    corecore