778 research outputs found

    Performance characterization tests of three 0.44-N (0.1 lbf) hydrazine catalytic thrusters

    Get PDF
    The 0.44-N (0.1-lbf) class of hydrazine catalytic thruster has been evaluated to assess its capability for spacecraft limit-cycle attitude control with thruster pulse durations on the order of 10 milliseconds. Dynamic-environment and limit-cycle simulation tests were performed on three commercially available thruster/valve assemblies, purchased from three different manufacturers. The results indicate that this class of thruster can sustain a launch environment and, when properly temperature-conditioned, can perform limit-cycle operations over the anticipated life span of a multi-year mission. The minimum operating temperature for very short pulse durations was determined for each thruster. Pulsing life tests were then conducted on each thruster under a thermally controlled condition which maintained the catalyst bed at both a nominal 93 C (200 F) and 205 C (400 F). These were the temperatures believed to be slightly below and very near the minimum recommended operating temperature, respectively. The ensuing life tests ranged from 100,000 to 250,000 pulses at these temperatures, as would be required for spacecraft limit-cycle attitude control applications

    Microwave Spectroscopy of Cold Rubidium Atoms

    Full text link
    The effect of microwave radiation on the resonance fluorescence of a cloud of cold 85Rb^{85}Rb atoms in a magnetooptical trap is studied. The radiation frequency was tuned near the hyperfine splitting frequency of rubidium atoms in the 5S ground state. The microwave field induced magnetic dipole transitions between the magnetic sublevels of the 5S(F=2) and 5S(F=3) states, resulting in a change in the fluorescence signal. The resonance fluorescence spectra were recorded by tuning the microwave radiation frequency. The observed spectra were found to be substantially dependent on the transition under study and the frequency of a repump laser used in the cooling scheme.Comment: 6 pages, 4 figure

    Doppler-free frequency modulation spectroscopy of atomic erbium in a hollow cathode discharge cell

    Full text link
    The erbium atomic system is a promising candidate for an atomic Bose-Einstein condensate of atoms with a non-vanishing orbital angular momentum (L0L \neq 0) of the electronic ground state. In this paper we report on the frequency stabilization of a blue external cavity diode laser system on the 400.91 nmnm laser cooling transition of atomic erbium. Doppler-free saturation spectroscopy is applied within a hollow cathode discharge tube to the corresponding electronic transition of several of the erbium isotopes. Using the technique of frequency modulation spectroscopy, a zero-crossing error signal is produced to lock the diode laser frequency on the atomic erbium resonance. The latter is taken as a reference laser to which a second main laser system, used for laser cooling of atomic erbium, is frequency stabilized

    Being proven wrong elicits learning in children - but only in those with higher executive function skills

    Get PDF
    This study investigated whether prompting children to generate predictions about an outcome facilitates activation of prior knowledge and improves belief revision. 51 children aged 9-12 were tested on two experimental tasks in which generating a prediction was compared to closely matched control conditions, as well as on a test of executive functions (EF). In Experiment 1, we showed that children exhibited a pupillary surprise response to events that they had predicted incorrectly, hypothesized to reflect the transient release of noradrenaline in response to cognitive conflict. However, children\u27s surprise response was not associated with better belief revision, in contrast to a previous study involving adults. Experiment 2 revealed that, while generating predictions helped children activate their prior knowledge, only those with better inhibitory control skills learned from incorrectly predicted outcomes. Together, these results suggest that good inhibitory control skills are needed for learning through cognitive conflict. Thus, generating predictions benefits learning - but only among children with sufficient EF capacities to harness surprise for revising their beliefs. (DIPF/Orig.

    Non-destructive, dynamic detectors for Bose-Einstein condensates

    Full text link
    We propose and analyze a series of non-destructive, dynamic detectors for Bose-Einstein condensates based on photo-detectors operating at the shot noise limit. These detectors are compatible with real time feedback to the condensate. The signal to noise ratio of different detection schemes are compared subject to the constraint of minimal heating due to photon absorption and spontaneous emission. This constraint leads to different optimal operating points for interference-based schemes. We find the somewhat counter-intuitive result that without the presence of a cavity, interferometry causes as much destruction as absorption for optically thin clouds. For optically thick clouds, cavity-free interferometry is superior to absorption, but it still cannot be made arbitrarily non-destructive . We propose a cavity-based measurement of atomic density which can in principle be made arbitrarily non-destructive for a given signal to noise ratio

    Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion

    Get PDF
    We perform a quantum theoretical calculation of the noise power spectrum for a phase measurement of the light output from a coherently driven optical cavity with a freely moving rear mirror. We examine how the noise resulting from the quantum back action appears among the various contributions from other noise sources. We do not assume an ideal (homodyne) phase measurement, but rather consider phase modulation detection, which we show has a different shot noise level. We also take into account the effects of thermal damping of the mirror, losses within the cavity, and classical laser noise. We relate our theoretical results to experimental parameters, so as to make direct comparisons with current experiments simple. We also show that in this situation, the standard Brownian motion master equation is inadequate for describing the thermal damping of the mirror, as it produces a spurious term in the steady-state phase fluctuation spectrum. The corrected Brownian motion master equation [L. Diosi, Europhys. Lett. {\bf 22}, 1 (1993)] rectifies this inadequacy.Comment: 12 pages revtex, 2 figure

    An ex-post view of inequality of opportunity in France and its regions

    Get PDF
    This paper proposes an ex-post measure of inequality of opportunity in France and its regions by assessing the inequality between individuals exerting the same effort. To this end, we define a fair income that fulfils ex-post equality of opportunity requirements. Unfairness is measured by an unfair Gini based on the distance between the actual income and the fair income. Our findings reveal that the measures of ex-post inequality of opportunity largely vary across regions, and that this is due to di_erences in reward schemes and in the impact of the non responsibility factors of income. We find that most regions have actual incomes closer to fair incomes than to average income, excepted Ile de France where the actual income looks poorly related to effort variables. Finally, we find that income inequality and inequality of opportunity are positively correlated among regions

    Recognition of BRAF by CDC37 and re‐evaluation of the activation mechanism for the Class 2 BRAF‐L597R mutant

    Get PDF
    The kinome specific co-chaperone, CDC37 (cell division cycle 37), is responsible for delivering BRAF (B-Rapidly Accelerated Fibrosarcoma) to the Hsp90 (heat shock protein 90) complex, where it is then translocated to the RAS (protooncogene product p21) complex at the plasma membrane for RAS mediated dimerization and subsequent activation. We identify a bipartite interaction between CDC37 and BRAF and delimitate the essential structural elements of CDC37 involved in BRAF recognition. We find an extended and conserved CDC37 motif, 20HPNID---SL--W31, responsible for recognizing the C-lobe of BRAF kinase domain, while the c-terminal domain of CDC37 is responsible for the second of the bipartite interaction with BRAF. We show that dimerization of BRAF, independent of nucleotide binding, can act as a potent signal that prevents CDC37 recognition and discuss the implications of mutations in BRAF and the consequences on signaling in a clinical setting, particularly for class 2 BRAF mutations
    corecore