1,847 research outputs found

    The relationship between mental toughness and cognitive control: evidence from the item-method directed forgetting task

    Get PDF
    Previous research by the authors found that mental toughness, as measured by the Mental Toughness Questionnaire 48 (MTQ48; Clough, P.J., Earle, K., & Sewell, D. [2002]. Mental toughness: the concept and its measurement. In I. Cockerill (Ed.), Solutions in sport psychology [pp. 32–43]. London: Thomson Publishing), was significantly associated with performance on the list-method directed forgetting task. The current study extends this finding to the item-method directed forgetting task in which the instruction to Remember or Forget is given after each item in the study list. A significant positive association was found between the correct recognition of Remember words and the emotional control subscale of the MTQ48. No significant associations were observed with other measures of mental toughness or personality. The findings are discussed in terms of the relationship between mental toughness and cognitive control

    High-school students' mastery of basic flow-control constructs through the lens of reversibility

    Get PDF
    High-school students specialising in computing fields need to develop the abstraction skills required to understand and create programs. Novices' difficulties at high-school level, ranging from mastery of the "notional machine"to recognition of a program's purpose, have not been investigated as extensively as at tertiary level. This work explores high-school students' code comprehension by asking to reason about reversing conditional and iteration constructs. A sample of 205 K11 - 13 students from different institutions were asked to engage in a set of "reversibility tasklets". For each code fragment, they need to identify if its computation is reversible and either provide the code to reverse or an example of a value that cannot be reversed. For 4 such items, after extracting the recurrent patterns in students' answers, we have carried out an analysis within the framework of the SOLO taxonomy. Overall, 74% of answers correctly identified if the code was reversible but only 42% could provide the full explanation/code. The rate of relational answers varies from 51% down to 21%, the poorest performance arising for a small array-processing loop (and although 65% of the subjects had correctly identified the loop as reversible). The instruction level did not have a strong impact on performance, indicating such tasks are suitable for K11, when the basic flow-control constructs are usually introduced. In particular, the reversibility concept could be a useful pedagogical instrument both to assess and to help develop students' program comprehension

    Association between Antibodies to the MR 67,000 Isoform of Glutamate Decarboxylase (GAD) and Type 1 (Insulin-Dependent) Diabetes Mellitus with Coexisting Autoimmune Polyendocrine Syndrome Type II

    Get PDF
    By using an immunoprecipitation assay, we analysed reactivity of autoantibodies to human recombinant GAD65 and GAD67 in sera from patients with autoimmune polyendocrine syndrome Type II (APS II) with and without Type 1 (insulin-dependent) diabetes mellitus (IDDM) compared to patients with organ-specific autoimmunity. Overall antibodies to GAD65 were correlated with IDDM in all study groups, whereas GAD67 antibodies were associated with IDDM when APS II coexists. Antibodies to GAD65 and GAD67 were detected in 13 (44.8%) and 7 (24.1%) out of 29 APS II patients with IDDM, but in only 4 (13.8%) and 2 (6.9%) out of 29 APS II patients without IDDM, respectively (p < 0.05). In short-standing IDDM (< 1 year), antibodies to GAD67 were significantly more frequent in patients with APS II (5 of 9 [55.6%] subjects) compared to matched diabetic patients without coexisting polyendocrinopathy (1 of 18 [5.6%] subjects) (p < 0.02). The levels of GAD65 (142 ± 90 AU) and GAD67 antibodies (178 ± 95 AU) were significantly higher in patients with polyglandular disease than in patients with isolated IDDM (91 ± 85 AU and 93 ± 57 AU) (p < 0.02). Interestingly, all 11 GAD67 antibody positive subjects also had GAD65 antibodies (p < 0.0001), and in 10 of 11 anti-GAD67 positive sera the GAD67 antibodies could be blocked by either GAD67 or GAD65, suggesting the presence of cross-reactive autoantibodies. No correlation was observed between GAD antibodies and age, sex or any particular associated autoimmune disease, besides IDDM. GAD antibodies were present in only 1 of 6 (16.7%) patients with APS Type I, in 1 of 26 (3.9%) patients with autoimmune thyroid disease but in none of the patients with Addison's disease (n = 16), pernicious anaemia (n = 7) or normal controls (n = 50). Our data suggest distinct antibody specificities reactive to GAD isoforms in APS II and IDDM, which might reflect different mechanisms of autoimmune response in IDDM with coexisting autoimmune polyendocrine autoimmunity

    Motor Preparatory Activity in Posterior Parietal Cortex is Modulated by Subjective Absolute Value

    Get PDF
    For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To determine how monetary consequences influence the neural representations of motor preparation, human brain activity was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in posterior parietal and premotor cortex peaked in high “absolute value” (high gain or loss) conditions: being highest for large gains in subjects who believed they performed well while being highest for large losses in those who believed they performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute value of that action, predicated upon subjective, rather than objective, estimates of one's performance

    Auditory but Not Audiovisual Cues Lead to Higher Neural Sensitivity to the Statistical Regularities of an Unfamiliar Musical Style

    Get PDF
    It is still a matter of debate whether visual aids improve learning of music. In a multisession study, we investigated the neural signatures of novel music sequence learning with or without aids (auditory-only: AO, audiovisual: AV). During three training sessions on 3 separate days, participants (nonmusicians) reproduced (note by note on a keyboard) melodic sequences generated by an artificial musical grammar. The AV group (n = 20) had each note color-coded on screen, whereas the AO group (n = 20) had no color indication. We evaluated learning of the statistical regularities of the novel music grammar before and after training by presenting melodies ending on correct or incorrect notes and by asking participants to judge the correctness and surprisal of the final note, while EEG was recorded. We found that participants successfully learned the new grammar. Although the AV group, as compared to the AO group, reproduced longer sequences during training, there was no significant difference in learning between groups. At the neural level, after training, the AO group showed a larger N100 response to lowprobability compared to high-probability notes, suggesting an increased neural sensitivity to statistical properties of the grammar; this effect was not observed in the AV group. Our findings indicate that visual aids might improve sequence reproduction while not necessarily promoting better learning, indicating a potential dissociation between sequence reproduction and learning. We suggest that the difficulty induced by auditory-only input during music training might enhance cognitive engagement, thereby improving neural sensitivity to the underlying statistical properties of the learned material

    GaAs:Mn nanowires grown by molecular beam epitaxy of (Ga,Mn)As at MnAs segregation conditions

    Full text link
    GaAs:Mn nanowires were obtained on GaAs(001) and GaAs(111)B substrates by molecular beam epitaxial growth of (Ga,Mn)As at conditions leading to MnAs phase separation. Their density is proportional to the density of catalyzing MnAs nanoislands, which can be controlled by the Mn flux and/or the substrate temperature. Being rooted in the ferromagnetic semiconductor (Ga,Mn)As, the nanowires combine one-dimensional properties with the magnetic properties of (Ga,Mn)As and provide natural, self assembled structures for nanospintronics.Comment: 13 pages, 6 figure

    Quantum metrology at the limit with extremal Majorana constellations

    Get PDF
    Quantum metrology allows for a tremendous boost in the accuracy of measurement of diverse physical parameters. The estimation of a rotation constitutes a remarkable example of this quantum-enhanced precision. The recently introduced Kings of Quantumness are especially germane for this task when the rotation axis is unknown, as they have a sensitivity independent of that axis and they achieve a Heisenberg-limit scaling. Here, we report the experimental realization of these states by generating up to 21-dimensional orbital angular momentum states of single photons, and confirm their high metrological abilities

    Multifunctional Devices and Logic Gates With Undoped Silicon Nanowires

    Full text link
    We report on the electronic transport properties of multiple-gate devices fabricated from undoped silicon nanowires. Understanding and control of the relevant transport mechanisms was achieved by means of local electrostatic gating and temperature dependent measurements. The roles of the source/drain contacts and of the silicon channel could be independently evaluated and tuned. Wrap gates surrounding the silicide-silicon contact interfaces were proved to be effective in inducing a full suppression of the contact Schottky barriers, thereby enabling carrier injection down to liquid-helium temperature. By independently tuning the effective Schottky barrier heights, a variety of reconfigurable device functionalities could be obtained. In particular, the same nanowire device could be configured to work as a Schottky barrier transistor, a Schottky diode or a p-n diode with tunable polarities. This versatility was eventually exploited to realize a NAND logic gate with gain well above one.Comment: 6 pages, 5 figure

    Joule-assisted silicidation for short-channel silicon nanowire devices

    Full text link
    We report on a technique enabling electrical control of the contact silicidation process in silicon nanowire devices. Undoped silicon nanowires were contacted by pairs of nickel electrodes and each contact was selectively silicided by means of the Joule effect. By a realtime monitoring of the nanowire electrical resistance during the contact silicidation process we were able to fabricate nickel-silicide/silicon/nickel- silicide devices with controlled silicon channel length down to 8 nm.Comment: 6 pages, 4 figure
    corecore