We report on the electronic transport properties of multiple-gate devices
fabricated from undoped silicon nanowires. Understanding and control of the
relevant transport mechanisms was achieved by means of local electrostatic
gating and temperature dependent measurements. The roles of the source/drain
contacts and of the silicon channel could be independently evaluated and tuned.
Wrap gates surrounding the silicide-silicon contact interfaces were proved to
be effective in inducing a full suppression of the contact Schottky barriers,
thereby enabling carrier injection down to liquid-helium temperature. By
independently tuning the effective Schottky barrier heights, a variety of
reconfigurable device functionalities could be obtained. In particular, the
same nanowire device could be configured to work as a Schottky barrier
transistor, a Schottky diode or a p-n diode with tunable polarities. This
versatility was eventually exploited to realize a NAND logic gate with gain
well above one.Comment: 6 pages, 5 figure