187 research outputs found

    Remineralization of initial carious lesions in deciduous enamel after application of dentifrices of different fluoride concentrations

    Full text link
    The aim of the present study was to evaluate the remineralization potential of five dentifrices with different fluoride concentrations. Initial caries lesions were created in 72 cylindrical enamel blocks from deciduous teeth. The specimens were randomly distributed among six experimental groups corresponding to six experimental periods. Each of the six volunteers carried two deciduous enamel specimens fixed in an intraoral appliance for a period of 4 weeks. They brushed their teeth and the enamel blocks at least two times a day with dentifrices containing 0 ppm (period 1), 250 ppm (period 2), and 500 ppm fluoride (period 3), respectively. A second group of volunteers (n = 6) used dentifrices with a fluoride content of 0 ppm (period 4), 1,000 ppm (period 5), or 1,500 ppm (period 6). At the end of the respective period, the mineral content was determined by transversal microradiography (TMR). The use of dentifrices containing 500 ppm fluoride (38% MR), 1,000 ppm fluoride (42% MR), and 1,500 ppm fluoride (42% MR) resulted in a statistically significant higher mineral recovery compared to the control group (0 ppm fluoride). Mineral recovery was similar after use of dentifrices containing 0 and 250 ppm fluoride (24%; 25%). It is concluded that it is possible to remineralize initial carious lesions in deciduous enamel in a similar way as it has been described for enamel of permanent teeth

    Improving guideline adherence for cardiac rehabilitation in the Netherlands

    Get PDF
    Background In 2004, the Netherlands Society of Cardiology released the current guideline on cardiac rehabilitation. Given its complexity and the involvement of various healthcare disciplines, it was supplemented with a clinical algorithm, serving to facilitate its implementation in daily practice. Although the algorithm was shown to be effective for improving guideline adherence, several shortcomings and deficiencies were revealed. Based on these findings, the clinical algorithm has now been updated. This article describes the process and the changes that were made. Methods The revision consisted of three phases. First, the reliability of the measurement instruments included in the 2004 Clinical Algorithm was investigated by evaluating between-centre variations of the baseline assessment data. Second, based on the available evidence, a multidisciplinary expert advisory panel selected items needing revision and provided specific recommendations. Third, a guideline development group decided which revisions were finally included, also taking practical considerations into account. Results A total of nine items were revised: three because of new scientific insights and six because of the need for more objective measurement instruments. In all revised items, subjective assessment methods were replaced by more objective assessment tools (e.g. symptom-limited exercise instead of clinical judgement). In addition, four new key items were added: screening for anxiety/depression, stress, cardiovascular risk profile and alcohol consumption. Conclusion Based on previously determined shortcomings, the Clinical Algorithm for Cardiac Rehabilitation was thoroughly revised mainly by incorporating more objective assessment methods and by adding several new key area

    Response of bone turnover markers to raloxifene treatment in postmenopausal women with osteopenia.

    Get PDF
    Introduction: The change in bone turnover markers (BTM) in response to osteoporosis therapy can be assessed by a decrease beyond the least significant change (LSC) or below the mean of the reference interval (RI). We compared the performance of these two approaches in women treated with raloxifene. Methods: Fifty postmenopausal osteopenic women, (age 51-72y) were randomised to raloxifene or no treatment for 2 years. Blood samples were collected for the measurement of BTM. The LSC for each marker was calculated from the untreated women and the RI obtained from healthy premenopausal women (age 35-40y). Bone mineral density (BMD) was measured at the spine and hip. Results: There was a decrease in BTM in response to raloxifene treatment; percentage change at 12 weeks, CTX -39% (95% CI -48 to -28) and PINP -32% (95% CI -40 to -23) P<0.001. The proportion of women classified as responding to treatment using LSC at 12 weeks was: CTX 38%, PINP 52%, at 48 weeks CTX 60%, PINP 65%. For the RI approach; at 12 weeks CTX and PINP 38%, at 48 weeks CTX 40%, PINP 45%. There was a significant difference in the change in spine BMD in the raloxifene treated group compared to the no-treatment group at week 48; difference 0.031 g/cm2, (95% CI 0.016 to 0.046, P<0.001). Conclusions: The two approaches identified women that reached the target for treatment using BTM. Both LSC and RI criteria appear useful in identifying treatment response but the two approaches do not fully overlap and may be complementary

    Circadian Clock Genes Contribute to the Regulation of Hair Follicle Cycling

    Get PDF
    Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK–regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes

    The effectiveness of modern cardiac rehabilitation : A systematic review of recent observational studies in non-attenders versus attenders

    Get PDF
    BACKGROUND: The beneficial effects of cardiac rehabilitation (CR) have been challenged in recent years and there is now a need to investigate whether current CR programmes, delivered in the context of modern cardiology, still benefit patients. METHODS: A systematic review of non-randomised controlled studies was conducted. Electronic searches of Medline, Embase, CINAHL, science citation index (web of science), CIRRIE and Open Grey were undertaken. Non-randomised studies investigating the effects of CR were included when recruitment occurred from the year 2000 onwards in accordance with significant CR guidance changes from the late 1990's. Adult patients diagnosed with acute myocardial infarction (AMI) were included. Non-English articles were considered. Two reviewers independently screened articles according to pre-defined selection criteria as reported in the PROSPERO database (CRD42015024021). RESULTS: Out of 2,656 articles, 8 studies involving 9,836 AMI patients were included. Studies were conducted in 6 countries. CR was found to reduce the risk of all-cause and cardiac-related mortality and improve Health-Related Quality of Life (HRQOL) significantly in at least one domain. The benefits of CR in terms of recurrent MI were inconsistent and no significant effects were found regarding re-vascularisation or re-hospitalisation following AMI. CONCLUSION: Recent observational evidence draws different conclusions to the most current reviews of trial data with respect to total mortality and re-hospitalisation, questioning the representativeness of historic data in the modern cardiological era. Future work should seek to clarify which patient and service level factors determine the likelihood of achieving improved all-cause and cardiac mortality and reduced hospital re-admissions

    Tumor Growth Rate Determines the Timing of Optimal Chronomodulated Treatment Schedules

    Get PDF
    In host and cancer tissues, drug metabolism and susceptibility to drugs vary in a circadian (24 h) manner. In particular, the efficacy of a cell cycle specific (CCS) cytotoxic agent is affected by the daily modulation of cell cycle activity in the target tissues. Anti-cancer chronotherapy, in which treatments are administered at a particular time each day, aims at exploiting these biological rhythms to reduce toxicity and improve efficacy of the treatment. The circadian status, which is the timing of physiological and behavioral activity relative to daily environmental cues, largely determines the best timing of treatments. However, the influence of variations in tumor kinetics has not been considered in determining appropriate treatment schedules. We used a simple model for cell populations under chronomodulated treatment to identify which biological parameters are important for the successful design of a chronotherapy strategy. We show that the duration of the phase of the cell cycle targeted by the treatment and the cell proliferation rate are crucial in determining the best times to administer CCS drugs. Thus, optimal treatment times depend not only on the circadian status of the patient but also on the cell cycle kinetics of the tumor. Then, we developed a theoretical analysis of treatment outcome (TATO) to relate the circadian status and cell cycle kinetic parameters to the treatment outcomes. We show that the best and the worst CCS drug administration schedules are those with 24 h intervals, implying that 24 h chronomodulated treatments can be ineffective or even harmful if administered at wrong circadian times. We show that for certain tumors, administration times at intervals different from 24 h may reduce these risks without compromising overall efficacy

    How adolescents who cut themselves differ from those who take overdoses

    Full text link
    The aims of this study were to identify in what ways adolescents who cut themselves differ from those who take overdoses, and to investigate the role of contagion in these behaviours. Data from an anonymous self-report questionnaire survey of 6,020 adolescents in 41 schools were analysed. Comparison of 220 adolescents who reported self-cutting in the previous year with 86 who had taken overdoses in the previous year as the sole method of deliberate self-harm (DSH) showed that far more of those who cut themselves had friends who had also engaged in DSH in the same period (OR 2.84, 95% CI 1.5–5.3, P < 0.001), and fewer had sought help from friends before cutting (OR 0.5, 95% CI 0.3–0.9, P < 0.02). Self-cutting usually involved less premeditation. Analyses at both the individual and school level showed that the association between engaging in DSH and exposure to DSH amongst peers was largely confined to girls who cut themselves. There are important differences between adolescents who cut themselves and those who take overdoses. Contagion may be an important factor in DSH by adolescents, especially in girls who cut themselves. These findings are relevant to the design of prevention and treatment programmes

    Modeling the Effects of Cell Cycle M-phase Transcriptional Inhibition on Circadian Oscillation

    Get PDF
    Circadian clocks are endogenous time-keeping systems that temporally organize biological processes. Gating of cell cycle events by a circadian clock is a universal observation that is currently considered a mechanism serving to protect DNA from diurnal exposure to ultraviolet radiation or other mutagens. In this study, we put forward another possibility: that such gating helps to insulate the circadian clock from perturbations induced by transcriptional inhibition during the M phase of the cell cycle. We introduced a periodic pulse of transcriptional inhibition into a previously published mammalian circadian model and simulated the behavior of the modified model under both constant darkness and light–dark cycle conditions. The simulation results under constant darkness indicated that periodic transcriptional inhibition could entrain/lock the circadian clock just as a light–dark cycle does. At equilibrium states, a transcriptional inhibition pulse of certain periods was always locked close to certain circadian phases where inhibition on Per and Bmal1 mRNA synthesis was most balanced. In a light–dark cycle condition, inhibitions imposed at different parts of a circadian period induced different degrees of perturbation to the circadian clock. When imposed at the middle- or late-night phase, the transcriptional inhibition cycle induced the least perturbations to the circadian clock. The late-night time window of least perturbation overlapped with the experimentally observed time window, where mitosis is most frequent. This supports our hypothesis that the circadian clock gates the cell cycle M phase to certain circadian phases to minimize perturbations induced by the latter. This study reveals the hidden effects of the cell division cycle on the circadian clock and, together with the current picture of genome stability maintenance by circadian gating of cell cycle, provides a more comprehensive understanding of the phenomenon of circading gating of cell cycle
    corecore