37 research outputs found

    Towards Fish Lipid Nutrigenomics: Current State and Prospects for Fin-fish Aquaculture

    Get PDF
    Lipids are the predominant source of energy for fish. The mechanisms by which fish allocate energy from lipids, for metabolism, development, growth and reproduction are critical for understanding key life history strategies and transitions. Currently, the major lipid component in aquaculture diets is fish oil (FO), derived from wild capture fisheries that are exploited at their maximum sustainable limit. The increasing demand from aquaculture for FO will soon exceed supply and threaten the viability of aquaculture. Thus, it is essential to minimize FO use in aquaculture diets. This might be achieved by a greater understanding of lipid storage and muscle growth, or the identification of alternatives to FO in feeds. This review focuses on recent research applying molecular and genomic techniques to the study of fin-fish lipid metabolism from an aquaculture perspective. Accordingly, particular emphasis will be given to fatty acid metabolism and to highly unsaturated fatty acid (HUFA) biosynthesis, and to the transcriptional mechanisms and endocrine factors that regulate these processes in fish. Comparative studies of gene function and distribution are described which, when integrated with recent fish genome sequence information, provide insights into lipid homeostasis and the outcomes associated with the replacement of FO in fish diets

    Growth hormone and somatolactin function during sexual maturation of female Atlantic salmon

    Get PDF
    Background and aims: The growth hormone-insulin-like growth factor I (GH-IGF-I) system is known to act during sexual maturation of female salmonids, but the specific roles are not known. Somatolactin (SL) is a pituitary hormone closely related to GH and is only found in fish. In some species, including salmonids, there are two forms, SLa and SLß. The SL receptor (SLR) has recently been cloned and phylogenetic analysis shows that it is similar to previously cloned GH receptors (GHRs) of non-salmonids. The ligand-specificity of the GHR/SLR is unclear. Little is known about the role of the SLs in sexual maturation of fish. The aim of this thesis has been to increase our knowledge about the regulatory role(s) of both the GH-IGF-I system and of SLs during sexual maturation in female Atlantic salmon. Methods: The cDNA sequences of Atlantic salmon GHRs (two isoforms), SLR, as well as SLa and SLß were obtained with the goals of carrying out a phylogenetic analysis, and of developing molecular tools for analysis of mRNA levels using real time quantitative PCR (RTqPCR). The roles of GH, IGF-I and SL were examined in a 17-month long study on one sea winter Atlantic salmon females. mRNA expression levels of ovarian components of the GH-IGF-I system and SLR and pituitary GH, SLa and SLß were studied by RTqPCR. Levels of GH and IGF-I in plasma, and of GH in the pituitary were measured by radio-immunoassay. Results and Conclusions: The phylogenetic analysis (Paper I and II) of the cloned sequences reveals the placement of Atlantic salmon GHR in the GHR type II clade and SLR in the controversial GHR type I clade (putative SLRs). Concurrent analyses of pituitary GH mRNA levels, GH protein and plasma GH in the same individual fish demonstrates the complex dynamics of the GH system, which is inhibited by a continuous light. Papers III and IV confirm that there is an active GH-IGF-I-gonad axis in the female Atlantic salmon that appears to be functional at the start of exogenous vitellogenesis, final oocyte growth, spawning and possibly during postovulatory events. Evidence has been found for a photoperiod-driven GH-system activation which is initiated in January with stimulation of GH secretion from pituitary somatotropes. The role of this activation of the GH system in late winter/early spring appears to be the reversal of a prior plasma IGF-I and ovarian IGF-I mRNA downregulation driven by an unknown factor(s). This downregulation in IGF-I is thought to inhibit somatic cell proliferation. The activation of the GH-IGF-I-gonadal system also appears to limit energy allocation to gonadal growth. This series of events involving the GH-IGF-I system appears to take place during the so-called spring window of opportunity and it is the first time this has been described. The GH-IGF-I system also appears to have an important role during final oocyte growth, spawning and post-spawning events. SLa and SLß are both actively regulated during sexual maturation and could have several roles, such as signaling the status of visceral fat reserves during the spring window of opportunity, signaling lipid metabolic status before the onset of anorexia, involvement in Ca mobilization during vitellogenesis and/or control of lipid metabolism in lieu of GH during the final stages of oocyte growth

    Growth hormone profiles and development of somatotrophs in Atlantic Halibut Larvae

    Get PDF
    The Atlantic halibut is the largest flatfish species, and as other flatfish, has a complicated larval development. The pelagic larvae hatch after about two weeks and feeding starts six weeks later. After three to four months, they start to undergo metamorphosis. Following major changes in body shape, including the migration of the left to the right side, the larvae settle as bottom dwelling. In Atlantic halibut aquaculture, the larval rearing is a critical rearing stage, with high incidence of mortality and abnormal development.This study was supported by the EU (FAIR CT-961422) and the Swedish Council for Forestry and Agriculture Research

    Thyroid and pituitary gland development from hatching through metamorphosis of a teleost flatfish, the Atlantic halibut

    Get PDF
    Fish larval development, not least the spectacular process of flatfish metamorphosis, appears to be under complex endocrine control, many aspects of which are still not fully elucidated. In order to obtain data on the functional development of two major endocrine glands, the pituitary and the thyroid, during flatfish metamorphosis, histology, immunohistochemistry and in situ hybridization techniques were applied on larvae of the Atlantic halibut (Hippoglossus hippoglossus), a large, marine flatfish species, from hatching through metamorphosis. The material was obtained from a commercial hatchery. Larval age is defined as day-degrees (D =accumulated daily temperature from hatching). Sporadic thyroid follicles are first detected in larvae at 142 D (27 days post-hatch), prior to the completion of yolk sack absorption. Both the number and activity of the follicles increase markedly after yolk sack absorption and continue to do so during subsequent development. The larval triiodothyronine (T3) and thyroxine (T4) content increases, subsequent to yolk absorption, and coincides with the proliferation of thyroid follicles. A second increase of both T3 and T4 occurs around the start of metamorphosis and the T3 content further increases at the metamorphic climax. Overall, the T3 content is lower than T4. The pituitary gland can first be distinguished as a separate organ at the yolk sack stage. During subsequent development, the gland becomes more elongated and differentiates into neurohypophysis (NH), pars distalis (PD) and pars intermedia (PI). The first sporadic endocrine pituitary cells are observed at the yolk sack stage, somatotrophs (growth hormone producing cells) and somatolactotrophs (somatolactin producing cells) are first observed at 121 D (23 days post-hatch), and lactotrophs (prolactin producing cells) at 134 D (25 days post-hatch). Scarce thyrotrophs are evident after detection of the first thyroid follicles (142 D ), but coincident with a phase in which follicle number and activity increase (260 D ). The somatotrophs are clustered in the medium ventral region of the PD, lactotrophs in the anterior part of the PD and somatolactotrophs are scattered in the mid and posterior region of the pituitary. At around 600 D , coinciding with the start of metamorphosis, somatolactotrophs are restricted to the interdigitating tissue of the NH. During larval development, the pituitary endocrine cells become more numerous. The present data on thyroid development support the notion that thyroid hormones may play a significant role in Atlantic halibut metamorphosis. The time of appearance and the subsequent proliferation of pituitary somatotrophs, lactotrophs, somatolactotrophs and thyrotrophs indicate at which stages of larval development and metamorphosis these endocrine cells may start to play active regulatory roles.This work has been carried out within the projects ‘‘Endocrine Control as a Determinant of Larval Quality in Fish Aquaculture’’ (CT-96-1422) and ‘‘Arrested development: The Molecular and Endocrine Basis of Flatfish Metamorphosis’’ (Q5RS-2002-01192), with financial support from the Commission of the European Communities. However, it does not necessarily reflect the Commission’s views and in no way anticipates its future policy in this area. This project was further supported by the Swedish Council for Agricultural and Forestry Research and Pluriannual funding to CCMAR by the Portuguese Science and Technology Council

    Cloning of somatolactin alpha, beta forms and the somatolactin receptor in Atlantic salmon: Seasonal expression profile in pituitary and ovary of maturing female broodstock

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Somatolactin (Sl) is a fish specific adenohypophyseal peptide hormone related to growth hormone (Gh). Some species, including salmonids, possess two forms: Sl alpha and Sl beta. The somatolactin receptor (slr) is closely related to the growth hormone receptor (ghr). Sl has been ascribed many physiological functions, including a role in sexual maturation. In order to clarify the role of Sl in the sexual maturation of female Atlantic salmon (Salmo salar), the full length cDNAs of slr, Sl alpha and Sl beta were cloned and their expression was studied throughout a seasonal reproductive cycle using real-time quantitative PCR (RTqPCR).</p> <p>Methods</p> <p>Atlantic salmon Sl alpha, Sl beta and slr cDNAs were cloned using a PCR approach. Gene expression of Sl alpha, SL beta and slr was studied using RTqPCR over a 17 month period encompassing pre-vitellogenesis, vitellogenesis, ovulation and post ovulation in salmon females. Histological examination of ovarian samples allowed for the classification according to the degree of follicle maturation into oil drop, primary, secondary or tertiary yolk stage.</p> <p>Results</p> <p>The mature peptide sequences of Sl alpha, Sl beta and slr are highly similar to previously cloned salmonid forms and contained the typical motifs. Phylogenetic analysis of Atlantic salmon Sl alpha and Sl beta shows that these peptides group into the two Sl clades present in some fish species. The Atlantic salmon slr grouped with salmonid slr amongst so-called type I ghr. An increase in pituitary Sl alpha and Sl beta transcripts before and during spawning, with a decrease post-ovulation, and a constant expression level of ovarian slr were observed. There was also a transient increase in Sl alpha and Sl beta in May prior to transfer from seawater to fresh water and ensuing fasting.</p> <p>Conclusion</p> <p>The up-regulation of Sl alpha and Sl beta during vitellogenesis and spawning, with a subsequent decrease post-ovulation, supports a role for Sl during gonadal growth and spawning. Sl could also be involved in calcium/phosphate mobilization associated with vitellogenesis or have a role in energy homeostasis associated with lipolysis during fasting. The up-regulation of both Sl alpha and Sl beta prior to fasting and freshwater transfer, suggests a role for Sl linked to reproduction that may be independent of the maturation induced fasting.</p

    8th International Symposium on Fish Endocrinology

    No full text

    Epilogue: Past successes, present misconceptions and future milestones in salmon smoltification research

    No full text
    Although the parr-smolt transformation of salmonids has been investigated for some fifty years, an array of specific aspects of the process remains unclear. At the 7th International Workshop on Salmon Smoltification convened in Tono, Japan, there was a consensus for the need for a review of the most pertinent findings on smoltification over the years and a discussion of what the future holds. We present here a three-part summary based to a large extent on the presentations and lively discussions which took place at the Workshop. The first part outlines some of the impressive successes this research has fostered. The second part deals with some current misconceptions, often based on over-interpretation of data and/or the lack of data. Finally, a discussion of future targets and aims and their applications is presented. © 2007 Elsevier B.V. All rights reserved

    Is salmon smoltification an example of vertebrate metamorphosis Lessons learnt from work on flatfish larval development

    No full text
    The terms metamorphosis and smoltification both describe developmental processes. However, the question on what specific criteria define these terms continues to engage scientists. At the same time, various views have been expressed on whether or not smoltification of anadromous salmonids should be regarded as an example of vertebrate metamorphosis. This short overview tries to summarize some of these discussions and starts by determining if smoltificationmeets any of the criteria used to define metamorphosis. In particular, it broadly compares the process of flatfish metamorphosis with that of salmonid smoltification from a morphological, endocrine, molecular and behavioral perspective. Tools and approaches developed and used in metamorphosis research which could be useful in continued work on smoltification are highlighted.The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 222719—LIFECYCLE

    Local raw materials for production of fish feed for aquaculture

    No full text
    Access to safe, available and economical feed ingredients is becoming one of the most important challenges for strengthening the aquaculture industry and developing a more sustainable production
    corecore