20 research outputs found

    Accurate ab initio density fitting for multiconfigurational self-consistent field methods

    Get PDF
    Using Cholesky decomposition and density fitting to approximate the electron repulsion integrals, an implementation of the complete active space self-consistent field (CASSCF) method suitable for large-scale applications is presented. Sample calculations on benzene, diaquo-tetra-μ-acetato-dicopper(II), and diuraniumendofullerene demonstrate that the Cholesky and density fitting approximations allow larger basis sets and larger systems to be treated at the CASSCF level of theory with controllable accuracy. While strict error control is an inherent property of the Cholesky approximation, errors arising from the density fitting approach are managed by using a recently proposed class of auxiliary basis sets constructed from Cholesky decomposition of the atomic electron repulsion [email protected]

    Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers

    No full text
    New basis sets of the atomic natural orbital (ANO) type have been developed for the atoms Li-Fr and Be-Ra. The ANOs have been obtained from the average density matrix of the ground states and the lowest excited states of the atom, the positive ion, and the dimer at its equilibirium geometry. Scalar realtivisitc effects are included through the use of a Douglas-Kroll Hamiltonian. Multiconfigurational wave functions have been used with dynamic correlation included using second-order perturbation theory (CASSCF/CASPT2). The basis sets are applied in calculations of the ground-state potentials for the dimers. Computed bond energies are accurate to within 0.05 eV for the alkaline dimers and 0.02 eV for the alkaline-earth dimers (except for Be-2)

    The ground state and electronic spectrum of CUO: a mystery

    No full text
    Results are presented from a theoretical study of the lower electronic states of the CUO molecule. Multiconfigurational wave functions have been used with dynamic correlation added using second order perturbation theory. Extended basis sets have been used, which for uranium were contracted including scalar relativistic effects. Spin–orbit interaction has been included using the state-interaction approach. The results predict that the ground state of linear CUO is [phi]2 with the closed shell [sigma]+0 state 0.5 eV higher in energy. This is in agreement with matrix isolation spectroscopy, which predicts [phi]2 as the ground state when the matrix contains noble gas atoms heavier than Ne. In an Ne matrix, the experiments indicate, however, that CUO is in the [sigma]+0 state. The change of ground state due to the change of the matrix surrounding CUO cannot be explained by the results obtained in this work and remains a mystery

    A theoretical study of the N8 cubane to N8 pentalene isomerization reaction

    No full text
    The isomerization reaction of cubic N8 to the planar bicyclic structure analogous to pentalene has been investigated using multiconfigurational self-consistent field and second-order perturbation theory (CASPT2). Comparative calculations using density functional theory have also been performed. Five local minima on the energy surface have been found, and the transition states between each two consecutive minima have been determined. The results show that all steps in the isomerization process, except one, can proceed via a set of transition states with moderately high energy barriers (10–20kcal/mol)

    Basis set representation of the electron density at an atomic nucleus

    No full text
    In this paper a detailed investigation of the basis set convergence for the calculation of relativistic electron densities at the position of finite-sized atomic nuclei is presented. The development of Gauss-type basis sets for such electron densities is reported and the effect of different contraction schemes is studied. Results are then presented for picture-change corrected calculations based on the Douglas-Kroll-Hess Hamiltonian. Moreover, the role of electron correlation, the effect of the numerical integration accuracy in density functional calculations, and the convergence with respect to the order of the Douglas-Kroll-Hess Hamiltonian and the picture-change-transformed property operator are studied. (C) 2010 American Institute of Physics. [doi:10.1063/1.3491239

    Main group atoms and dimers studied with a new relativistic ANO basis set

    No full text
    New basis sets of the atomic natural orbital (ANO) type have been developed for the main group and rare gas atoms. The ANO's have been obtained from the average density matrix of the ground and lowest excited states of the atom, the positive and negative ions, and the dimer at its equilibrium geometry. Scalar relativistic effects are included through the use of a Douglas-Kroll Hamiltonian. Multiconfigurational wave functions have been used with dynamic correlation included using second-order perturbation theory (CASSCF/CASPT2). The basis sets are applied in calculations of ionization energies, electron affinities, and excitation energies for all atoms and the ground-state potentials for the dimers. These calculations include spin-orbit coupling using the RASSCF State Interaction (RASSI-SO) method. The spin-orbit splitting for the lowest atomic term is reproduced with an accuracy of better than 0.05 eV, except for row 5, where it is 0.15 eV. Ionization energies and electron affinities have an accuracy better than 0.2 eV, and atomic polarizabilities for the spherical atoms are computed with errors smaller than 2.5%. Computed bond energies for the dimers are accurate to better than 0.15 eV in most cases (the dimers for row 5 excluded)

    New relativistic ANO basis sets for transition metal atoms

    No full text
    New basis sets of the atomic natural orbital (ANO) type have been developed for the first, second, and third row transition metal atoms. The ANOs have been obtained from the average density matrix of the ground and lowest excited states of the atom, the positive and negative ions, and the atom in an electric field. Scalar relativistic effects are included through the use of a Douglas-Kroll-Hess Hamiltonian. Multiconfigurational wave functions have been used with dynamic correlation included using second order perturbation theory (CASSCF/CASPT2). The basis sets are applied in calculations of ionization energies, electron affinities, and excitation energies for all atoms and polarizabilities for spherically symmetric atoms. These calculations include spin-orbit coupling using a variation-perturbation approach. Computed ionization energies have an accuracy better than 0.2 eV in most cases. The accuracy of computed electron affinities is the same except in cases where the experimental values are smaller than 0.5 eV. Accurate results are obtained for the polarizabilities of atoms with spherical symmetry. Multiplet levels are presented for some of the third row transition metals

    Multiconfigurational Quantum Chemistry

    No full text
    The first book to aid in the understanding of multiconfigurational quantum chemistry, Multiconfigurational Quantum Chemistry demystifies a subject that has historically been considered difficult to learn. Accessible to any reader with a background in quantum mechanics and quantum chemistry, the book contains illustrative examples showing how these methods can be used in various areas of chemistry, such as chemical reactions in ground and excited states, transition metal and other heavy element systems. The authors detail the drawbacks and limitations of DFT and coupled-cluster based methods and offer alternative, wavefunction-based methods more suitable for smaller molecules
    corecore