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Using Cholesky decomposition and density fitting to approximate the electron repulsion
integrals, an implementation of the complete active space self-consistent field �CASSCF� method
suitable for large-scale applications is presented. Sample calculations on benzene,
diaquo-tetra-�-acetato-dicopper�II�, and diuraniumendofullerene demonstrate that the Cholesky and
density fitting approximations allow larger basis sets and larger systems to be treated at the CASSCF
level of theory with controllable accuracy. While strict error control is an inherent property of the
Cholesky approximation, errors arising from the density fitting approach are managed by using a
recently proposed class of auxiliary basis sets constructed from Cholesky decomposition of the
atomic electron repulsion integrals. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2953696�

I. INTRODUCTION

The success of correlated wave function theories is in-
extricably linked to the quality of the underlying mean-field
description of the electronic structure. While the Hartree–
Fock �HF� wave function often is a good starting point for
correlated treatments of molecular electronic structure, un-
derstanding the true nature of the chemical bond requires a
more general mathematical formulation at the mean-field
level. The insufficient account of static electron correlation is
the reason behind the failure of the HF reference wave func-
tion in many situations. Systems such as molecules with un-
filled valencies in their electronic ground state �e.g., radicals
and diradicals� or molecules containing atoms with low-lying
excited states possess a number of near degenerate electronic
configurations and therefore exhibit strong static correlation
effects. More generally, at the dissociation limit for chemical
bonds, along reactions paths in chemical and photochemical
reactions, and often for excited electronic states, a qualita-
tively correct description of the wave function is possible
only if the most significant electronic configurations are in-
cluded.

The natural way to extend the HF model to account for
static correlation effects is therefore to construct the mean-
field electronic wave function from multiple Slater determi-
nants. This approach results in a multiconfigurational self-
consistent field �MCSCF� wave function. The increased
complexity of the MCSCF wave function is accompanied by

a sizable increase in computational cost compared to the HF
wave function. The computational cost can be kept at a rea-
sonable level by selecting a small number of electrons and
orbitals, the so-called active space, and include in the MC-
SCF wave function all possible electronic configurations ob-
tained by distributing these active electrons into the active
orbitals. This leads to the complete active space self-
consistent field �CASSCF� wave function.1 Given a physi-
cally correct active space, the CASSCF wave function offers
maximum flexibility for a qualitative description of the elec-
tronic structure of even the most exotic types of chemical
bonds.2 The dynamical correlation required for a quantitative
description can be recovered by a subsequent second-order
perturbative correction �CASPT2�.3 The success of this ap-
proach has been documented by a number of studies on elec-
tronic ground �see, e.g., Refs. 4 and 5� and excited states
�see, e.g., Refs. 6–10�. In addition, the CASSCF wave func-
tion has been instrumental for understanding photochemical
processes.11,12

The sheer number of electronic configurations is the ma-
jor obstacle to the application of the CASSCF method to
large molecules. In many cases, however, relatively small
active spaces can be devised independently of the size of the
molecule. In such cases, the bottleneck of CASSCF calcula-
tions is the evaluation and storage of electron repulsion inte-
grals �ERIs� in atomic orbital �AO� basis and their transfor-
mation to molecular orbital �MO� basis. In fact, as for other
correlated wave-function-based methods, rather large one-
electron basis sets must be used to obtain converged results
for the total CASSCF/CASPT2 correlation energy. It is
therefore of utmost importance to develop techniques that
can reduce the computational cost of calculating and trans-
forming the ERIs.
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As the ERI matrix is symmetric positive semidefinite,
Cholesky decomposition �CD� can be used to reduce storage
as well as computational demands.13,14 When the resulting
Cholesky vectors are employed directly in the evaluation of
Fock matrices and ERIs in the MO basis, the computational
cost of ab initio and density functional theory �DFT� meth-
ods drops considerably.14–16 Nearly abandoned for almost
three decades,17–19 the CD approach has now been integrated
in modern quantum chemistry softwares and proven to be an
excellent approximation for fast and accurate correlated
calculations.14,15,20–30 In this work, we demonstrate that the
CD approach can be used also in conjunction with the
CASSCF method.

The density fitting �DF� or resolution of the identity31–33

�RI� approximation is a much more widespread technique for
handling ERIs in computational quantum chemistry. For ex-
ample, DF has been used to speed up DFT and second-order
Møller–Plesset �MP2� energy34–40 and property41–44 calcula-
tions. Unlike the CD approach, however, DF requires an
auxiliary basis set for expanding AO product densities. The
auxiliary basis sets are normally designed to be used with a
particular method and AO basis set in such a way that spe-
cific energy contributions are accurately represented.35,41,45,46

However, as pointed out by Ten-no and Iwata,47,48 such pro-
cedure is hardly meaningful for the CASSCF method, as it
would probably require different auxiliary basis sets to accu-
rately approximate the MO-transformed ERIs needed in
CASSCF as well as the Coulomb and exchange contributions
from the inactive and active Fock matrices. Moreover, the
dependence of the computed energy on the choice of the
active space makes it very difficult to set up a consistent
optimization procedure of the type required for externally
defined auxiliary basis sets.

Recently, three of the present authors have proposed the
atomic CD �aCD� approach for generating hierarchies of
auxiliary basis sets that are not biased towards a particular
quantum chemical method.49 These aCD auxiliary basis sets
were shown to give accurate ground state energies with HF,
MP2, and hybrid as well as nonhybrid DFT methods.49 In the
present work, we investigate their accuracy and efficiency in
conjunction with the CASSCF wave function.

Section II presents an implementation of the CASSCF
equations based on CD or DF ERI approximations. Sample
CASSCF calculations demonstrating the accuracy and per-
formance of the new implementation are given in Sec. III,
and our conclusions are given in Sec. IV.

II. THEORY

A. CD and DF representations of the ERIs

The ERIs in AO basis can be written as

������� � �
J=1

M

L��
J L��

J , �1�

where Greek indices represent the AOs ��. The vectors LJ

are calculated either by a CD of the ERI matrix or by a DF
procedure.

In the CD case, the vectors are calculated recursively
according to13,14

L��
J = �hJ�hJ

˜ �−1/2�����hJ� − �
K=1

J−1

L��
K LJ

K	 , �2�

�hJ�hJ
˜ � = �hJ�hJ� − �
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�LJ
K�2, �3�

for J=1,2 , . . . ,M. Each of the functions in the Cholesky
basis 
hJ� is a specific AO product function ���� selected in

each step J of the CD procedure by the criterion �hJ �hJ
˜ �

=max����� ���˜ �. The recursive procedure is completed once
the largest updated diagonal ERI matrix element is smaller

than the decomposition threshold ��0, i.e., �hJ �hJ
˜ ���.

Hence, M is the number of Cholesky vectors needed to rep-
resent all ERIs with an accuracy of at least �. See Refs. 13
and 14 for more details of the CD procedure.

The DF vectors can be calculated according to

L��
J = �

K

����hK�BKJ, �4�

where the matrix B is the inverse Cholesky factor of the
matrix

GJK = �hJ�hK� . �5�

That is,

G−1 = BBT, �6�

where the superscript T denotes matrix transposition. In con-
trast to the CD procedure, the DF approach requires the defi-
nition of an auxiliary basis set 
hJ�. Traditional auxiliary ba-
sis sets consist of atom-centered �contracted� Gaussian
functions whose exponents �and contraction coefficients� are
optimized for each AO basis set and quantum chemical
method, see, e.g., Refs. 35, 46, 50, and 51. Ten-no and
Iwata47,48 proposed a different approach for generating aux-
iliary basis sets. In this approach, the atomic ERI matrix is
diagonalized and all eigenvectors corresponding to eigenval-
ues above a given threshold are used as auxiliary basis func-
tions. Recently, three of the authors49 proposed a similar pro-
cedure for generating auxiliary basis sets. Instead of
diagonalization, the atomic ERI matrix is Cholesky decom-
posed and the resulting Cholesky basis defines the auxiliary
basis set. Performing a range of aCDs with decreasing de-
composition threshold � leads to hierarchies of increasingly
accurate auxiliary basis sets. The aCD procedure for gener-
ating auxiliary basis sets is performed on the fly for each
unique atom/AO basis set pair. Since the Cholesky �auxil-
iary� basis set 
hJ� in both CD and aCD is not obtained
through any data fitting but instead systematically derived
from the AO basis set, it seems appropriate to refer to this
type of approaches in a unified language as “ab initio density
fitting.” We here use two different types of aCD auxiliary
basis sets. The aCD-n* auxiliary basis set is generated by
aCD with decomposition threshold �=10−n. The aCD-n aux-
iliary basis set is obtained from the aCD-n* set by removing
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the highest angular momentum functions. More details can
be found in Ref. 49.

For both CD and aCD, the number of vectors, M, is
comparable to the number of AOs, N. Depending primarily
on the decomposition threshold and much less on the type of
the AO basis set, typical values of the ratio M /N range from
3 to 8.

B. The CASSCF method using CD and DF

We base our discussion on the formulation of the
CASSCF method as described in detail in Ref. 52. The stan-
dard notation for MO indices is used: i , j ,k , l , . . . refer to
inactive, t ,u ,v ,w , . . . to active, a ,b ,c ,d , . . . to secondary,
and m ,n , p ,q ,r ,s to general MO indices.

Defining the MCSCF Fock operator with matrix
elements

Fmn = �
q

Dmqhnq + �
qrs

Pmqrs�nq�rs� , �7�

the Brillouin–Levy–Berthier conditions can be written as

Fia = 0,

Fta = 0, �8�

Fit − Fti = 0,

where D and P are the one- and two-electron density matri-
ces, and h is the one-electron Hamiltonian. These equations
represent the set of necessary and sufficient conditions for
optimal orbitals in the CASSCF wave function. The expres-
sion of the non-Hermitian generalized Fock matrix in Eq. �7�
is completely general and is valid for any kind of wave func-
tion. In the CASSCF case, however, it is possible to rewrite
this Fock matrix in such a way that only density matrix ele-
ments with all indices active are referenced. In fact, when the
first index refers to an inactive orbital, we can write

Fin = 2�IFni + AFni� �9�

once we define the following �Hermitian� inactive and active
Fock matrices:

IFmn = hmn + �
k

�2�mn�kk� − �mk�kn�� , �10�

AFmn = �
vw

Dvw��mn�vw� −
1

2
�mw�vn�	 . �11�

If the first index belongs instead to an active orbital, we
obtain

Fvn = �
w

Dvw
IFnw + Qvn, �12�

where we have introduced the matrix Q given by

Qvm = �
wxy

Pvwxy�mw�xy� , �13�

Finally, we can easily prove that the Fock matrix elements
vanish whenever the first index belongs to the secondary
space.

In the conventional CASSCF approach, the inactive and
the active Fock matrices are computed in the AO basis while
the Q matrix is directly computed from the list of MO-
transformed integrals. For relatively small configuration ex-
pansions and large atomic basis sets, the integral transforma-
tion is the bottleneck of the CASSCF calculations, scaling as
AN4, where A is the number of active orbitals.

Using the ERI expression of Eq. �1�, it is possible to
compute the inactive and active Fock matrices, Eqs. �10� and
�11�, in the AO basis in the same way as in CD-based
HF,14,16

F�� = �
J

L��
J �

��

D��L��
J −

1

2�
kJ

Lk�
J Lk�

J , �14�

where k runs over either the inactive �IF� or the active �AF�
orbital indices, and D is the corresponding one-electron den-
sity matrix in the AO basis. The formal scaling �leading
term� of the evaluation of both these matrices is �I+A�N2M,
where I is the number of inactive orbitals. The quartic scal-
ing is due to the evaluation of the exchange terms which
require also a MO half-transformation of the vectors, L��

J

→Lk�
J . By using the recently developed “local exchange”

�LK� screening16 in conjunction with localized Cholesky
MOs,53 the actual scaling of this step is reduced to quadratic
even in compact molecules.16

The construction of the Q matrix is done without explicit
construction of the MO-transformed ERIs. The Q matrix can
be computed more efficiently using the following half-
transformed expression:

Qv	 = �
wJ

L	w
J �

xy

PvwxyLxy
J = �

wJ

L	w
J Zvw

J , �15�

where the leading term scales as A2NM.
Integrals of the type �tw �xy� are needed for the solution

of the CAS-CI secular equations and they can be easily
generated from the fully transformed �in the active space�
vectors. The cost of the integral generation scales as A4M.

The bottleneck in the construction of the CASSCF Fock
matrix and �tw �xy� integrals is moved from the MO integral
transformation to the evaluation of the inactive exchange
Fock matrix. Thus, all the well known advantages of using
the DF and CD approximations in the HF method16,51,54 are
present also in CASSCF and, hence, large-scale applications
of the latter become possible.

As shown in the Appendix, another strategy for imple-
menting DF and CD approximations in CASSCF would be to
construct the inactive and active Fock matrices directly as
MO half-transformed quantities. Solely based on an opera-
tion count viewpoint, such algorithm would be advantageous
compared to the one previously described. On the other
hand, the LK screening reduces drastically the number of
contributions effectively computed. In terms of overall speed
of the calculation, it is therefore necessary to complement
the second algorithm with an equally efficient screening
technique. In this respect, the evident analogy between the
two algorithms seems to indicate that a slightly modified
version of the LK screening would meet such requirements.
We intend to return to this subject in future publications,
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whereas here we have only implemented the formulas of the
present section in order to make use of existing codes for the
self-consistent wave function optimization.

III. SAMPLE CALCULATIONS

In this section we present sample CASSCF calculations
for three molecules. The benzene molecule, which is a stan-
dard system for benchmarking the ability of CASSCF to de-
scribe both ground and excited states,55–57 is used to assess
the accuracy of the CD and DF-based CASSCF. The superior
performance of the new implementation is verified by com-
paring conventional and CD and DF timings for calculating
the magnetic coupling constant of an antiferromagnetic
Cu�II� complex, diaquo-tetra-�-acetato-dicopper�II�. Finally,
calculations of diuraniumendofullerene demonstrate the
large-scale applicability of the CD and DF-based CASSCF.
All calculations are performed on a single AMD Opteron
2.4 GHz processor with a development version of the
MOLCAS quantum chemistry software.58,59

A. Benzene

The calculations on the benzene molecule use Dunning’s
correlation consistent basis sets60 and are performed within
the D2h point group symmetry, which is the largest Abelian
subgroup of the full D6h point group of benzene. The states
are labeled according to the irreducible representations of the
latter. Using six electrons and the six 
 and 
* orbitals as
active space, a typical choice for small unsaturated hydrocar-
bons, we optimize the state-averaged 
-CASSCF wave func-
tions of the three lowest-lying A1g singlet electronic states of
benzene. The ground state, 1 1A1g, is dominated �87%� by the
HF electronic configuration. The first excited state, 2 1A1g, is
described by a mixture of two single-excited configurations
�31% +14% � and by the HF electronic configuration �20%�.
Its energy is predicted to be 7.82 eV above the ground state
with the cc-pVQZ basis set and 7.89 or 7.84 eV with
cc-pVDZ or cc-pVTZ, respectively. The second excited state,
3 1A1g, is dominated by two double-excited configurations
�21% +21% � with a significant contribution from the HF
electronic configuration �24%�. The computed energy of this

second excited state is 11.27 eV above the ground state with
the cc-pVQZ basis set and 11.39 or 11.30 eV with cc-pVDZ
or cc-pVTZ, respectively. It may be argued that these two
excited states are not the most relevant from a spectroscopic
point of view. Indeed, with this example we aimed at testing
the accuracy of our method in rather extreme situations, thus
for CASSCF states of high energy and multiconfigurational
character.

Tables I and II report the errors of various CD and DF
approximations with respect to conventional results for total
energies and excitation energies, respectively. Representing
the ERIs by a CD of threshold �=10−n is denoted CD-n in
these tables. Evidently, CD and DF-based CASSCF produces
accurate results, especially for excitation energies �i.e., en-
ergy differences� which benefit from error cancellation. Pre-
liminary calculations on triplet states as well as other singlet
states of benzene have shown similar accuracies. In particu-
lar, for the aCD-n* sets, we observe an error in the computed
excitation energies of at most 0.44 meV and note that the
error nearly vanishes with the largest �cc-pVQZ� basis set.
This range of errors is well below the inherent error due to
truncation of the one-electron basis set. For instance, the
largest difference in the excitation energies computed with
cc-pVDZ and cc-pVQZ in the present example is about
120 meV, three orders of magnitude larger than the
maximum error introduced by the most accurate CD and DF
approximations ��=10−5�.

From Table I we notice a major difference between the
CD and aCD approximations. The CD shows invariably bet-
ter accuracy in the total computed energy when using tighter
thresholds. The same is not always true for the aCD* basis
sets and seems to be not at all a property of the reduced aCD
basis sets. This can be explained by the fact that in the aCD
approximations, the inaccuracy of the two-electron integrals
is no longer bounded by the decomposition threshold and
therefore the resulting errors in the energy can have a some-
what accentuated statistical behavior. In Fig. 1, we report the
maximum and root mean square �rms� error in the value of
the diagonal elements of the ERI matrix of benzene �C1 point
group symmetry� employing aCD* auxiliary functions for
the cc-pVTZ valence basis set. The general trend �accuracy

TABLE I. Benzene molecule. Deviations with respect to conventional calculations of the state-averaged 
-CASSCF total energies. Ground and two
lowest-lying excited singlet electronic states of A1g symmetry. Total numbers of AO basis functions: 114 �cc-pVDZ�, 264 �cc-pVTZ�, and 510 �cc-pVQZ�.

Vectors

�E/meV

1 1A1g 2 1A1g 3 1A1g

cc-pVDZ cc-pVTZ cc-pVQZ cc-pVDZ cc-pVTZ cc-pVQZ cc-pVDZ cc-pVTZ cc-pVQZ

CD-3 193.94 −111.16 13.82 206.13 −98.36 16.32 199.09 97.96 15.45
CD-4 4.40 13.56 −10.53 4.52 13.94 −10.23 4.28 13.35 10.52
CD-5 0.73 1.32 0.08 0.86 1.31 0.13 0.87 1.25 0.05

aCD-3* 0.70 5.52 8.46 0.55 5.95 8.66 0.30 5.56 8.54
aCD-4* 0.59 0.13 8.29 0.46 0.13 8.49 0.14 0.09 8.36
aCD-5* 1.78 0.14 8.21 2.13 0.14 8.41 2.00 0.10 8.28

aCD-3 1.68 −34.94 −586.60 0.87 −47.31 −664.14 −0.53 −50.63 −673.90
aCD-4 6.42 −67.19 82.59 4.24 −82.40 72.29 3.11 −82.91 55.19
aCD-5 7.73 −58.25 48.99 7.15 −71.12 31.24 6.60 −70.70 16.22
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versus decomposition threshold� in the representation of the
ERIs is respected. The histograms of Fig. 1 should be ana-
lyzed together with the diagram of Fig. 2 where the number
of auxiliary functions �M� employed in the various DF rep-
resentations is plotted as a function of decomposition thresh-
old. The aCD* sets contain more functions than the corre-
sponding CD and therefore it is not surprising that aCD-3* in

Fig. 1 gives an accuracy in the integral representation on the
order of 10−4, even better than expected for the CD-3 repre-
sentation. We also note that the corresponding error for the
aCD-3 auxiliary basis set is on the order of 10−2, indicating
that some of the integrals are poorly approximated once the
highest angular components are removed from the atomic
auxiliary basis sets. Regarding these reduced aCD basis sets,
two important things can be deduced from Fig. 2. First, they
contain much less functions than the corresponding aCD*

basis sets and, second, the number of such functions is nearly
independent of the chosen decomposition threshold. We also
point out that occasionally, as in the case reported in Fig. 2,
the number of auxiliary functions in the aCD sets does not
necessarily increase when larger valence basis sets are em-
ployed. These observations guide us to a better understand-
ing of Table I. Except for the tighter thresholds, each aCD*

set gives an improved approximation over the corresponding
CD. This is surprisingly true also for the aCD sets, although
the errors become relatively larger for the cc-pVQZ calcula-
tions. Most importantly, these errors seem to be very consis-
tent between the various electronic states, an observation

TABLE II. Benzene molecule. Deviations with respect to conventional calculations of the state-averaged

-CASSCF excitation energies of A1g symmetry. Total numbers of AO basis functions: 114 �cc-pVDZ�, 264
�cc-pVTZ�, and 510 �cc-pVQZ�.

Vectors

��E−E0�/meV

1 1A1g→2 1A1g 1 1A1g→3 1A3g

cc-pVDZ cc-pVTZ cc-pVQZ cc-pVDZ cc-pVTZ cc-pVQZ

CD-3 12.18 12.80 2.50 5.14 13.20 1.63
CD-4 0.12 0.38 0.29 −0.12 −0.21 0.00
CD-5 0.12 −0.01 0.05 0.13 −0.06 0.02

aCD-3* −0.15 0.42 0.19 −0.40 0.03 0.08
aCD-4* −0.13 0.00 0.19 −0.44 −0.04 0.07
aCD-5* 0.35 0.00 0.19 0.21 −0.03 0.07

aCD-3 −0.80 −12.37 −77.53 −2.21 −15.69 −87.29
aCD-4 −2.17 −15.20 −10.30 −3.31 −15.71 −27.40
aCD-5 −0.58 −12.86 −17.35 −1.13 −12.45 −32.77

FIG. 1. Benzene molecule. Maximum and rms errors in the representation
of the diagonal AO two-electron integrals employing various aCD approxi-
mations for the cc-pVTZ basis set. Notation described in the text.

FIG. 2. Benzene molecule. Number of CD and aCD auxiliary basis func-
tions needed at a given decomposition threshold for cc-pVXZ basis sets
�X=T,Q�.
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confirmed by the results of Table II. Here, the benefits of
error cancellations are clear since at all levels of DF approxi-
mation, we observe a much higher accuracy in the computed
excitation energies than for the corresponding total energies.
It should be mentioned that the accuracy of the results of
Tables I and II is also affected by the fact that CASSCF is an
iterative energy minimization procedure and not just a single
energy calculation �not forgetting that there is also a prelimi-
nary SCF wave function optimization involved�. If all the
CASSCF energy calculations had been performed with the
same set of starting orbitals �say, optimized conventional
CASSCF orbitals�, the overall accuracy would have been
improved further. For real-life applications, however, the
results reported here are certainly of greater interest.

We conclude from the results of Table II that all DF
approximations introduced in the present work are reliable
for predicting the excitation energies at the CASSCF level of
theory. While the CD approximation is the most robust
among them, the use of the aCD auxiliary basis sets would
result in the computationally most efficient choice due to the
minimal number of auxiliary functions required. The aCD*

sets are very accurate even at loose thresholds and although
they constitute a larger auxiliary basis set than their CD
counterparts, the possibility to avoid the somewhat expen-
sive decomposition of the molecular ERI matrix can often be
an advantage, as discussed below.

A more thorough study on the accuracy of the CD
approximation in spectroscopy was recently performed on
the low-lying excited states of the complex Co�III�
�di-iminato��NPh�. We refer to Ref. 29 for details of the cal-
culations and the results. Here, we just want to mention that
with an ANO-RCC-VTZP basis set �869 functions�, on the
type of hardware specified above, the time needed to gener-
ate the CD vectors �CD-4� was 217 min and the iteration
time for the CASSCF calculations �ten active orbitals with
ten electrons� was 4 min per iteration. The errors in com-
puted excitation energies for 24 electronic states was never
larger than 0.01 eV.

B. Diaquo-tetra-�-acetato-dicopper„II…

We demonstrate the computational advantages in using
CD and DF-based CASSCF over conventional implementa-
tions by calculating the magnetic coupling constant �J�
as the energy difference between the lowest-lying
singlet �ES� and triplet �ET� electronic states of one
of the first synthetic molecular magnetic material,
diaquo-tetra-�-acetato-dicopper�II� �see Ref. 61 and refer-
ences therein�. This complex exhibits an antiferromagnetic
behavior with an experimentally well characterized magnetic
coupling constant of J=−37 meV. A minimal active space of
two electrons and two orbitals can qualitatively describe the
physics of the problem, especially if a sufficiently large
AO basis set is employed. We here use the 6-3111+G�f�
basis set on Cu and the 6-31G* basis set on the
remaining atoms. The conventional calculation yields
ES=−4338.692 123 02 a.u., ET=−4338.692 035 57 a.u., and
J=−2.379 meV. Although outside the scope of the present

work, we note that it is necessary to include dynamical
correlation effects in order to reproduce the experimental
magnetic coupling constant.

Due to the relatively small energy difference, it is crucial
that the inaccuracy introduced by CD or DF is minimal. This
is clearly the case, as can be seen from Table III. The error in
the computed J is in all cases below 0.02 meV and effec-
tively zero for most of them. This is mainly due to error
cancellation, as the total energy deviations are one to two
orders of magnitude larger depending on the chosen thresh-
old for CD or aCD. Table III also reports the wall time and
disk space required to perform the two single-state CASSCF
calculations. �Timings include the integral/vector generation
but not the preliminary SCF calculation. All 12 CASSCF
calculations converge in nine iterations.� The largest speedup
is nearly a factor of 25, with a reduction in disk space re-
quirements by a factor of 30. Even for the CD-8 approxima-
tion, which is virtually exact, the calculation requires less
than 8% of the disk space and is nearly five times faster than
the conventional one.

C. Diuraniumendofullerene

The new CASSCF implementation is intended for sys-
tems that are not immediately feasible with conventional
implementations. One such system is diuraniumendof-
ullerene, U2@C60, which has been reported to possess a sep-
tet ground state �see Refs. 62 and 63 and references therein�.
An efficient implementation of multiconfigurational wave
function methods is imperative in order to study the elec-
tronic structure of U2@C60.

We here calculate the CASSCF�6,18� wave function of
the lowest-lying septet state of U2@C60 using CD and DF
technology. We employ in all cases the relativistic
ANO-RCC basis set of Roos et al.64 for the U atoms and
three basis sets for the C atoms, namely, the MIDI,65

ANO-RCC,64 and cc-pVDZ �Ref. 60� basis sets.
Although the active space chosen in this example is rela-

tively large, restricting the calculation to septet spin symme-
try reduces the number of configuration state functions to
less than 10 000. The cost of the CASSCF wave function
optimization is therefore completely dominated by the size
of the AO basis set. Actual timings are reported in Table IV
along with the disk space used to store the CD or DF vectors.

TABLE III. 
C14�H2O��2��-AcO�4, C1 point group symmetry. Absolute er-
rors with respect to conventional single-state CASSCF�2,2� energies of the
lowest singlet �ES� and triplet �ET� states and magnetic coupling constant
�J=ES-ET�. A total of 394 AO basis functions was employed.

Vectors Wall time �h� �disk/Gb�

Absolute deviation �meV�

ES ET J

Conventional 9.8 �19� … … …
CD-8 2.1�1.4� 0.0095 0.0097 0.000
CD-6 1.2�1.1� 0.574 0.571 0.003
CD-4 0.5�0.8� 73.392 73.395 0.003

aCD 4* 0.9�1.1� 47.749 47.736 0.013
aCD-4 0.4�0.6� 106.49 106.49 0.000
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We observe that the time required to perform a CD of the
ERI matrix is substantially larger than that required to gen-
erate DF vectors. This is mainly due to the presence of four-
center ERIs in the CD, whereas the DF vector calculation
requires only three-center ERIs. It must be stressed that the
generation of the auxiliary basis sets by CD of the atomic
ERI matrix has no influence on the computational cost of
calculating DF vectors. From the calculations using the two
largest AO basis sets, both containing 1040 basis functions,
we note that the computational cost depends not only on the
size but also on the nature of the AO basis set. The ANO-
RCC basis functions are defined by contractions of a much
larger number of primitive functions than in the cc-pVDZ
case and the ERI evaluations are therefore significantly more
expensive for the former, regardless of whether four-center
integrals are needed or not. The disk space consumption, on
the other hand, is less sensitive to the nature of the basis set.

IV. CONCLUSIONS

We have presented a CASSCF implementation based on
CD and DF approximations to the ERIs. The complexity of
the CASSCF wave function requires that the ERIs are repro-
duced with uniform accuracy. While this is trivially fulfilled
in the CD case, standard DF auxiliary basis sets constructed
by data fitting of specific energy contributions are of no use.
Instead, we employ auxiliary basis sets obtained by CD of
the atomic ERI matrix, allowing a degree of error control
which is almost as good as for the full CD. As explicitly
shown by sample calculations, substantial computational
savings are obtained compared to the conventional CASSCF
implementation with no loss of accuracy.
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APPENDIX: REDUCED COST FORMULATION
OF THE DF-CASSCF METHOD

Here we demonstrate that it is possible to compute the
CASSCF inactive and active Fock matrices in terms of CD
or DF vectors with a formal computational cost lower than
the one discussed in Sec. II B. In Eq. �9� we have restricted
the first index to be inactive while the second index is gen-
eral. In this case we may as well compute the corresponding
MO half-transformed Fock matrix:

Fi	 = 2�IF	i + AF	i� , �A1�

where the general index is now in AO basis. The half-
transformed inactive and active Fock matrices would then
read

IF	i = h	i + �
k

�2�	i�kk� − �	k�ik��

= h	i + 2�
J

L	i
J �

k

Lkk
J − �

Jk

L	k
J Lik

J

= h	i + 2�
J

L	i
J UJ − �

Jk

L	k
J Lik

J , �A2�

AF	i = �
vw

Dvw��	i�vw� −
1

2
�	w�vi�	

= �
J

L	i
J �

vw

DvwLvw
J −

1

2�
Jw

L	w
J �

v
DvwLvi

J

= �
J

L	i
J VJ −

1

2�
Jw

L	w
J Ywi

J . �A3�

TABLE IV. U2@C60. Timings of CASSCF�6,18� calculations of the lowest septet state in Ci symmetry �N is the
total number of AO basis functions, and M is the number of DF auxiliary functions, or CD vectors�.

N Type M

Wall time �h�

Disk/GbyteVector generation CASSCF iteration

740a CD-4 2997 6.0 0.3 2.7
aCD-4* 3796 1.2 0.4 3.9
aCD-4 3269 1.1 0.4 3.4

1040b CD-4 4373 50.2 0.6 8.8
aCD-4* 6516 11.5 0.8 13.6
aCD-4 5104 9.5 0.7 10.7

1040c CD-4 4349 11.5 0.5 8.4
aCD-4* 5676 3.5 0.7 11.8
aCD-4 4264 3.0 0.6 8.9

aU�ANO-RCC.9s8p6d4f1g� ,C�MIDI.3s2p�.
bU�ANO-RCC.9s8p6d4f1g� ,C�ANO-RCC.3s2p1d�.
cU�ANO-RCC.9s8p6d4f1g� ,C�cc-pVDZ�.
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The half-transformation of the vectors in the primary
space �inactive+active� scales as �I+A�N2M and is the most
demanding in terms of operation count. Apart from that, the
most expensive term to be computed is the exchange part of
the inactive Fock matrix, scaling as I2NM, which is much
smaller then the cost for the exchange term in the AO basis
�IN2M�, assuming I�N.

Finally, also for Eq. �13� we can compute the corre-
sponding half-transformed matrix:

Fv	 = �
w

Dvw
IF	w + Qv	. �A4�

The first term involves a block of the inactive Fock matrix
IF	w which can be easily obtained by complementing IF	i in
the active orbital space

IF	w = h	w + 2�
J

L	w
J UJ − �

Jk

L	k
J Lwk

J , �A5�

with a cost scaling as IANM in the leading term �exchange�.
Hence, by constructing the inactive and active Fock ma-

trices from the half-transformed DF vectors as in Eq. �A3�,
the saving in operation count for the leading term is about
50% for large basis sets. As HF wave function optimization
can be considered a special case of the CASSCF one, these
conclusions apply to HF as well.
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