41 research outputs found

    Advanced In Situ Soil Water Sampling System for Monitoring Solute Fluxes in the Vadose Zone

    Get PDF
    To estimate potential risks of groundwater contamination, national and international environmental legislation stipulates standard values referred to pollutant contents in the soil and more rarely referred to loads in the soil leachate. Although in situ soil leachate analysis yields more realistic drainage water quality estimates than soil contamination level–derived estimates, there is no existing standard for how to explicitly sample soil leachate for the required contaminant migration detection. The objective of this study was to overcome current limitations of soil seepage sampling for detecting a contaminant migration in the unsaturated zone by introducing a technical solution that automatically restricts soil water extraction to drainage periods using active devices such as suction cups. Sampling is triggered by a moisture threshold parameterized according to the respective soil water retention properties defining the onset of a drainage period. We tested our sampling approach on two different bioretention systems in Germany for stormwater drainage quality analysis out of the upper soil layer. We present the monitoring results of the 4-mo testing phase containing 19 individual storm events illustrating the fundamental functioning of the in situ soil leachate sampling system under different climatic conditions. The results clearly demonstrate the feasibility of restricting soil water extraction to drainage periods by means of actual soil moisture measures and indicate a general transferability of our approach. Our approach is easily duplicable, based on the included technical description, for further studies requiring explicit soil leachate sampling and is likely to help improve the reliability of field-monitored pollutant migration from contaminated sites.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Predicting water supply and evapotranspiration of street trees using hydro-pedo-transfer functions (HPTFs)

    Get PDF
    The climate, soil properties, groundwater depth, and surrounding settings in cities vary to a tremendous extent, which all lead to different growing conditions and health for street trees. Because of climate change, the availability of water in cities will undergo changes in the next decades. As urban trees have a very positive influence not only on microclimate but also on biodiversity and life quality in general, they need to be protected. Thus, we need to know how to measure and calculate the availability of water for street trees to optimize their site conditions and water supply. This study presents Hydro-Pedo-Transfer Functions (HTPFs) for predicting water supply and actual evapotranspiration of street trees for varying urban conditions. The HTPFs are easy to use, and the input parameters can either be mapped easily or taken from local climate agencies or soil surveys. The first part of the study focuses on the theoretical background and related assumptions of the HTPFs for predicting water supply, and on obtaining the potential and actual evapotranspiration of urban street trees using easily available data. The second part gives information and exemplifies how this input data can be measured, mapped, or predicted. Calibration of the HTPFs were done using the sap-flow measurements of three Linden trees (Tilia cordata). Exemplarily, the HTPF scenarios for the varying urban site conditions of Berlin are presented. The water supply and actual evapotranspiration of the street trees severely depend on the local climate (summer rainfall and potential evapotranspiration), site conditions (catchment area, soil available water, and degree of sealing), and on the tree characteristics (species, age, and rooting depth). The presented concept and the equations build a good and flexible frame that is easy to program using a spreadsheet tool or an R script. This tool should be tested and validated also for other cities and climate regions.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berli

    Evaluating the variation of dissolved metals on a highway roadside using a generalized additive mixed model (GAMM)

    Get PDF
    Assessing metal concentrations in roadside soils requires a better understanding of the extent to which they are affected by different environmental factors such as soil texture, depth, pH, runoff concentration, and precipitation. Monthly data of dissolved Cd, Ni, Cr, Pb, Cu, and Zn concentrations in three different roadside soils (sandy loam, gravel (0–32 mm) and a mixture of sandy loam and gravel) were measured during a 2-year lysimeter field study at different depths. The data was used to assess the variation of trace elements and how they were affected by environmental factors. For data interpretation, generalized additive mixed models (GAMMs) were used to explore the complex behavior of metals in heterogeneous soils by detecting linear and nonlinear trends of metal concentrations in the soil solution. As a result, the modeling approach showed that Cd, Ni, Cr, Pb, Cu, and Zn concentrations are functions of different environmental variables, which have either linear or nonlinear behavior. All investigated metals showed that pH could explain their variation. With exception of precipitation, Ni and Cr variations can nearly be explained by the same environmental factors used in this study (time, pH, infiltration volume, roadside soil type, runoff concentrations, and depth). During the study period, we found that Zn variation can be explained by its nonlinear relationship with all the significant studied environmental factors. As the depth increases from the surface to 30 cm of depth, the metal concentration of Cd, Ni, Cr, Pb, and Zn increases. Surprisingly, the roadside soil consisting of gravel has the lowest organic carbon and showed the lowest median concentration of Cd, Ni, Pb, Cu, and Zn at 30 cm. Moreover, the model showed that the surface runoff volume has no effect on the metal variation in the soil solutionPostprint (published version

    Analyzing temporal trends of urban evaporation using generalized additive models

    Get PDF
    This study aimed to gain new insights into urban hydrological balance (in particular, the evaporation from paved surfaces). Hourly evaporation data were obtained simultaneously from two high-resolution weighable lysimeters. These lysimeters are covered in two pavement sealing types commonly used for sidewalks in Berlin, namely cobble-stones and concrete slabs. A paired experiment in field conditions is designed to determine the mechanism by which these two types of soil sealing affect the evaporation rate under the same climatic conditions. A generalized additive model (GAM) is applied to explain how the climatic conditions interact with soil sealing and to evaluate the variation of evaporation rate according to pavement type. Moreover, taking the advantage of the fact that the experimental design is paired, the study fits a new GAM where the response variable is the difference between the evaporation rate from the two lysimeters and its explanatory variables are the climatic conditions. As a result, under the same climatic conditions, cobble-stones are more prone to increasing the evaporation rate than concrete slabs when the precipitation accumulated over 10 h, solar radiation, and wind speed increases. On the other hand, concrete slabs are more inclined to increase the evaporation rate than cobblestones when the relative humidity increases. GAM represents a robust modeling approach for comparing different sealing types in order to understand how they alter the hydrological balanceFunding: The German Research Foundation DFG (GRK 2032) and the Open Access Publication Fund of TU Berlin.Peer ReviewedPostprint (published version

    Bestimmung mikrobieller Aktivität in Böden mittels IR – Thermographie

    Get PDF
    Die mikrobielle Aktivität in Böden wird in der Regel an abgeschlossenen Bodenproben anhand der Bodenatmung oder des Energieumsatzes erfasst (z.B. Respirometer, Kalorimeter). Diese Verfahren können jedoch nur punktuelle Aussagen zur mikrobiellen Aktivität, und damit z.B. zu Belastungen von Böden mit Umwelt-chemikalien liefern. In diesem Beitrag stellen wir ein Verfahren vor, das die Bestimmung flächenhafter mikrobieller Aktivität anhand von räumlich und zeitlich hoch aufgelöster Infrarot(IR)- Thermographie erlaubt. Erste Versuche zeigen, dass dieses Verfahren generell möglich ist. Mögliche andere Einflussgrößen für die Oberflächentemperatur, wie z.B. Evaporation, müssen ausgeschlossen oder bei der Auswertung berücksichtigt werden

    Extent, trend and extremes of droughts in urban areas

    Get PDF
    In der derzeitigen Wahrnehmung werden die Sommer dürrer, heißer und extremer – dieser Eindruck verstärkt sich im urbanen Raum durch das Auftreten von Hitzeinseleffekten in dicht bebauten Gebieten. Um das wirkliche Ausmaß der Dürre bewerten zu können, wurden Zeitreihendaten von 31 urbanen Klimastationen (DWD) für den Zeitraum 1950 bis 2019 mittels des standardisierten Niederschlagsindex (SPI) bezüglich Dürrelängen, Dürreextrema, Hitzewellen und gleichzeitig auftretenden Hitze- und Dürremonaten ausgewertet. Die Analyse zeigt eine große Heterogenität innerhalb von Deutschland: In den meisten Städten trat 2018 eine lange Dürre von einer durchschnittlichen Dauer von 6 Monaten auf, gleichzeitig gehörte das Jahr 2018 nur bei einem Drittel der Städte zu den drei Jahren mit den längsten Dürren seit 1950. Bei den meisten betrachteten Stationen traten die längsten Dürren in den Jahren 1953, 1971 und 1976 auf. Bei einigen südlichen und mitteldeutschen Städten kann man eine statistisch signifikante Zunahme der Anzahl der Dürremonate pro Dekade seit 1950 verzeichnen. Andere Städte, eher im Norden und Nordwesten gelegen, zeigen nur in den letzten zwei Dekaden eine Zunahme oder gar keinen Trend. Die Compoundanalyse von gleichzeitig auftretenden Hitze- und Dürremonaten zeigt bei den meisten Stationen eine starke Zunahme innerhalb der letzten zwei Dekaden, wobei die beiden Komponenten regional mit einem sehr unterschiedlichen Anteil zur Zunahme der Compoundereignisse beitragen.Summers are currently perceived to be getting longer, hotter and more extreme – and this impression is reinforced in urban areas by the occurrence of heat island effects in densely built-up areas. To assess the real extent of increasing drought occurrences in German cities, a DWD data set of 31 urban climate stations for the period 1950 to 2019 was analysed using the standardised precipitation index (SPI) with regard to meteorological drought lengths, drought extrema, heat waves and compound events in the form of simultaneously occurring heat waves and drought months. The analysis shows a large degree of heterogeneity within Germany: a severe drought occurred in most cities in 2018, while the year 2018 was among the three years with the longest droughts (since 1950) for only one third of the cities. Some southern and central German cities show a statistically significant increase in drought months per decade since 1950, other cities, mostly in the north and northwest, only show an increase in the past two decades or even no trend at all. The compound analysis of simultaneously occurring heat and drought months shows a strong increase at most stations in the last two decades, whereby the two components are responsible with a very different proportion regionally for the increase in compound events

    Bestimmung der Evaporationsrate von Bodenoberflächen mittels Thermographie

    Get PDF
    Die aktuellen Evaporationsraten von Bodenoberflächen lassen sich durch aufeinander folgende Wägungen bestimmen. Diese Methode hat zwei Nachteile (i) sie ist nur an kontrollierten Bodenmonolithen auf der Labor- und Lysimeterskala möglich und (ii) sie liefert nur ein über die gesamte Bodenoberfläche integriertes Signal, es gibt somit keine Information über eine räumlich variable Evaporationsrate. In diesem Beitrag stellen wir ein Verfahren vor, das die Evaporationsrate mittels Thermographie räumlich und zeitlich hochaufgelöst ermittelt. Ein erster Versuch zeigt, dass dieses Verfahren prinzipiell anwendbar ist. Allerdings spielen die Substrateigenschaften eine große Rolle, sodass eine jeweilige Kalibrierung notwendig ist

    Analyzing Temporal Trends of Urban Evaporation Using Generalized Additive Models

    Get PDF
    This study aimed to gain new insights into urban hydrological balance (in particular, the evaporation from paved surfaces). Hourly evaporation data were obtained simultaneously from two high-resolution weighable lysimeters. These lysimeters are covered in two pavement sealing types commonly used for sidewalks in Berlin, namely cobble-stones and concrete slabs. A paired experiment in field conditions is designed to determine the mechanism by which these two types of soil sealing affect the evaporation rate under the same climatic conditions. A generalized additive model (GAM) is applied to explain how the climatic conditions interact with soil sealing and to evaluate the variation of evaporation rate according to pavement type. Moreover, taking the advantage of the fact that the experimental design is paired, the study fits a new GAM where the response variable is the difference between the evaporation rate from the two lysimeters and its explanatory variables are the climatic conditions. As a result, under the same climatic conditions, cobble-stones are more prone to increasing the evaporation rate than concrete slabs when the precipitation accumulated over 10 h, solar radiation, and wind speed increases. On the other hand, concrete slabs are more inclined to increase the evaporation rate than cobblestones when the relative humidity increases. GAM represents a robust modeling approach for comparing different sealing types in order to understand how they alter the hydrological balance.DFG, 248198858, GRK 2032: Grenzzonen in urbanen Wassersysteme

    Architecture of a consent management suite and integration into IHE-based regional health information networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The University Hospital Heidelberg is implementing a Regional Health Information Network (RHIN) in the Rhine-Neckar-Region in order to establish a shared-care environment, which is based on established Health IT standards and in particular Integrating the Healthcare Enterprise (IHE). Similar to all other Electronic Health Record (EHR) and Personal Health Record (PHR) approaches the chosen Personal Electronic Health Record (PEHR) architecture relies on the patient's consent in order to share documents and medical data with other care delivery organizations, with the additional requirement that the German legislation explicitly demands a patients' opt-in and does not allow opt-out solutions. This creates two issues: firstly the current IHE consent profile does not address this approach properly and secondly none of the employed intra- and inter-institutional information systems, like almost all systems on the market, offers consent management solutions at all. Hence, the objective of our work is to develop and introduce an extensible architecture for creating, managing and querying patient consents in an IHE-based environment.</p> <p>Methods</p> <p>Based on the features offered by the IHE profile Basic Patient Privacy Consent (BPPC) and literature, the functionalities and components to meet the requirements of a centralized opt-in consent management solution compliant with German legislation have been analyzed. Two services have been developed and integrated into the Heidelberg PEHR.</p> <p>Results</p> <p>The standard-based Consent Management Suite consists of two services. The Consent Management Service is able to receive and store consent documents. It can receive queries concerning a dedicated patient consent, process it and return an answer. It represents a centralized policy enforcement point. The Consent Creator Service allows patients to create their consents electronically. Interfaces to a Master Patient Index (MPI) and a provider index allow to dynamically generate XACML-based policies which are stored in a CDA document to be transferred to the first service. Three workflows have to be considered to integrate the suite into the PEHR: recording the consent, publishing documents and viewing documents.</p> <p>Conclusions</p> <p>Our approach solves the consent issue when using IHE profiles for regional health information networks. It is highly interoperable due to the use of international standards and can hence be used in any other region to leverage consent issues and substantially promote the use of IHE for regional health information networks in general.</p

    Influence of quality of intensive care on quality of life/return to work in survivors of the acute respiratory distress syndrome: prospective observational patient cohort study (DACAPO)

    Get PDF
    BackgroundSignificant long-term reduction in health-related quality of life (HRQoL) is often observed in survivors of the acute respiratory distress syndrome (ARDS), and return to work (RtW) is limited. There is a paucity of data regarding the relationship between the quality of care (QoC) in the intensive care unit (ICU) and both HRQoL and RtW in ARDS survivors. Therefore, the aim of our study was to investigate associations between indicators of QoC and HRQoL and RtW in a cohort of survivors of ARDS.MethodsTo determine the influence of QoC on HRQoL and RtW 1 year after ICU-discharge, ARDS patients were recruited into a prospective multi-centre patient cohort study and followed up regularly after discharge. Patients were asked to complete self-report questionnaires on HRQoL (Short Form 12 physical component scale (PCS) and mental component scale (MCS)) and RtW. Indicators of QoC pertaining to volume, structural and process quality, and general characteristics were recorded on ICU level. Associations between QoC indicators and HrQoL and RtW were investigated by multivariable linear and Cox regression modelling, respectively. B values and hazard ratios (HRs) are reported with corresponding 95% confidence intervals (CIs).Results877 (of initially 1225 enrolled) people with ARDS formed the DACAPO survivor cohort, 396 were finally followed up to 1 year after discharge. The twelve-month survivors were characterized by a reduced HRQoL with a greater impairment in the physical component (Md 41.2 IQR [34-52]) compared to the mental component (Md 47.3 IQR [33-57]). Overall, 50% of the patients returned to work. The proportion of ventilated ICU patients showed significant negative associations with both 12months PCS (B=-11.22, CI -20.71; -1,74) and RtW (HR=0,18, CI 0,04;0,80). All other QoC indicators were not significantly related to outcome.ConclusionsAssociations between ICU QoC and long-term HrQoL and RtW were weak and largely non-significant. Residual confounding by case mix, treatment variables before or during ICU stay and variables pertaining to the post intensive care period (e.g. rehabilitation) cannot be ruled out.Trial registrationClinicaltrials.govNCT02637011.(December 22, 2015, retrospectively registered
    corecore