1,418 research outputs found

    Performances analysis of a semi-displacement hull by numerical simulations

    Get PDF
    The flow field generated by the towing of a semi-displacement hull, free to heave and pitch, is numerically investigated in the velocity range 18 34 Kn. The numerical code adopted is the in-house developed Xnavis, which is a general purpose unsteady RANS based solver; the solver is based on a Finite Volume approach together with a Chimera technique for overlapping grids and a Level Set approach to handle the air/water interface. The generated wave pattern shows many interesting features with an evident wave plunging near the hull bow, while the stern remains completely dry for velocities over 30 Kn. The numerical outcomes are discussed in terms of total resistance, sinkage and trim

    An association of boswellia, betaine and myo-inositol (EumastĂłs) in the treatment of mammographic breast density. A randomized, double-blind study

    Get PDF
    Mammographic breast density is a recognized risk factor for breast cancer. The causes that lead to the proliferation of the glandular breast tissue and, therefore, to an increase of breast density are still unclear. However, a treatment strategy to reduce the mammary density may bring about very relevant clinical outcomes in breast cancer prevention. Myo-inositol is a six-fold alcohol of cyclohexane, has already been proved to modulate different pathways: inflammatory, metabolic, oxidative and endocrine processes, in a wide array of human diseases, including cancer and the genesis of mammary gland and breast diseases, like fibrosis, as well as metabolic and endocrine cues. Similarly, boswellic acid and betaine (three-methyl glycine) both inhibit inflammation and exert protective effects on breast physiology. Based on this scientific background, we hypothesized that a combination including, boswellic acid, betaine and myo-inositol would be able to reduce breast density working on different pathways.OBJECTIVE: Mammographic breast density is a recognized risk factor for breast cancer. The causes that lead to the proliferation of the glandular breast tissue and, therefore, to an increase of breast density are still unclear. However, a treatment strategy to reduce the mammary density may bring about very relevant clinical outcomes in breast cancer prevention. Myo-inositol is a six-fold alcohol of cyclohexane, has already been proved to modulate different pathways: inflammatory, metabolic, oxidative and endocrine processes, in a wide array of human diseases, including cancer and the genesis of mammary gland and breast diseases, like fibrosis, as well as metabolic and endocrine cues. Similarly, boswellic acid and betaine (threemethyl glycine) both inhibit inflammation and exert protective effects on breast physiology. Based on this scientific background, we hypothesized that a combinat ion including, boswellic acid, betaine and myo-inositol would be able to reduce breast density working on different pathways. PATIENTS AND METHODS: In this study, seventy-six premenopausal women were randomly assigned to the placebo and the experimental drug arms (Eumastós®) for six months. RESULTS: After 6 months of treatment, statistically significant difference between the two groups was recorded on the breast density reduction (60% vs. 9%), using mammographic as well as ultrasound examination. CONCLUSIONS: Preliminary data collected here with support the starting assumptions,that the association comprising boswellic acid, betaine and myo-inositol significantly reduces mammary density, providing the first evidence for a new and safe approach for the management of mammographic density treatment

    Non-exponential kinetic behavior of confined water

    Full text link
    We present the results of molecular dynamics simulations of SPC/E water confined in a realistic model of a silica pore. The single-particle dynamics have been studied at ambient temperature for different hydration levels. The confinement near the hydrophilic surface makes the dynamic behaviour of the liquid strongly dependent on the hydration level. Upon decrease of the number of water molecules in the pore we observe the onset of a slow dynamics due to the ``cage effect''. The conventional picture of a stochastic single-particle diffusion process thus looses its validity

    Seismic energy partitioning inferred from pseudotachylyte-bearing faults (Gole Larghe Fault, Adamello batholith, Italy)

    Get PDF
    Fracture energy EG (the energy used for expanding a rupture surface area) is the fraction of work during seismic faulting that is required for creation of (i) new surfaces in the slip zone, and (ii) damage zone in the wall rocks. Partitioning of the earthquake energy between EG and frictional heat EH, determines the features of the rupture propagation and the mechanical behavior of the fault. The cataclastic microstructures associated with pseudotachylyte (solidified clast-laden friction-induced melt produced during coseismic slip) veins might contain information about the partitioning. In this preliminary study we used microstructural observations on pseudotachylytes from the Gole Larghe Fault zone (Southern Alps, Italy) to determine both EH and EG. The EH for unit fault surface area is estimated from pseudotachylyte vein thickness 2w. The energy required to produce friction melt is EH = [(1- f) H+ cP(Tm-Thr)]r 2w where f is the volume ratio of lithic clasts within the pseudotachylyte, H is the latent heat of fusion, cP is the specific heat at constant pressure, (Tm-Thr) is the difference between initial melt temperature and host rock temperature and r is the density. The EG is estimated by multiplying the newly created grain surface per unit of fault area by the specific surface energy (J m-2). In fact the studied pseudotachylyte vein contains plagioclase clasts displaying a characteristic internal fragmentation not observed in the host rock. This indicates a direct association between newly created grain surfaces and the seismic rupture process via pseudotachylyte production. It follows that pseudotachylytes might yield information on the energy partitioning between EG and EH

    Zebrafish embryo extracts enhance 5-FU anti-cancer effects upon breast cancer cells

    Get PDF
    – OBJECTIVE: The inhibition of the metastatic capability of cancer cells is a pivotal aim of current anticancer strategies. We investigated herein the anti-migrating and anti-invasive properties of Zebrafish embryo extracts (SL) – an integrative formula comprising morphogenetic factors extracted from zebrafish embryos – alone or in association with 5-Fluoro-Uracil (5-FU), when added to metastatic breast cancer cells (MDA-MB-231) and in normal epithelial breast cells (MCF10A) committed toward an inflammatory phenotype upon TGF-β1 stimulation. MATERIALS AND METHODS: Invasiveness, migrating capability, cytoskeleton architecture and related molecular factors involved in the epithelial-mesenchymal transition were studied after treatment with 5-FU, with and without SL. RESULTS: Remarkably, in both circumstances, embryo extracts amplify the migratory inhibition triggered by the anticancer drug 5-Fu. The fact that such an effect is noticed in normal as well as in cancerous cells suggests that the critical target of embryo extracts is specifically represented by the migrating/invasive phenotype. However, while 5-FU was unable in antagonizing the invasiveness of cancerous cells, the association with SL can significantly impair the invasive capability of tumor cells. These findings are noticeably associated with the reversion of the EMT phenotype in SL-treated cells, as documented by the contemporary downregulation of TCTP and some EMT-related molecular effectors, like α-SMA and Vimentin. CONCLUSIONS: Embryo fish extracts significantly counteract the migrating and invasive phenotype of cancerous and inflammatory breast cells treated with the chemotherapeutic drug 5-FU. The availability of a compound able to amplify 5-Fu activity while significantly hampering the invasive phenotype of breast cancer should provide invaluable benefits, namely if we consider that this compound is substantially deprived of side-effects

    Zebrafish embryo extracts enhance 5-FU anti-cancer effects upon breast cancer cells

    Get PDF
    OBJECTIVE: The inhibition of the metastatic capability of cancer cells is a pivotal aim of current anticancer strategies. We investigated herein the anti-migrating and anti-invasive properties of Zebrafish embryo extracts (SL) - an integrative formula comprising morphogenetic factors extracted from zebrafish embryos - alone or in association with 5-Fluoro-Uracil (5-FU), when added to metastatic breast cancer cells (MDA-MB-231) and in normal epithelial breast cells (MCF10A) committed toward an inflammatory phenotype upon TGF-beta 1 stimulation.MATERIALS AND METHODS: Invasiveness, migrating capability, cytoskeleton architecture and related molecular factors involved in the epithelial-mesenchymal transition were studied after treatment with 5-FU, with and without SL.RESULTS: Remarkably, in both circumstances, embryo extracts amplify the migratory inhibition triggered by the anticancer drug 5-Fu. The fact that such an effect is noticed in normal as well as in cancerous cells suggests that the critical target of embryo extracts is specifically represented by the migrating/invasive phenotype. However, while 5-FU was unable in antagonizing the invasiveness of cancerous cells, the association with SL can significantly impair the invasive capability of tumor cells. These findings are noticeably associated with the reversion of the EMT phenotype in SL-treated cells, as documented by the contemporary downregulation of TCTP and some EMT-related molecular effectors, like alpha-SMA and Vimentin.CONCLUSIONS: Embryo fish extracts significantly counteract the migrating and invasive phenotype of cancerous and inflammatory breast cells treated with the chemotherapeutic drug 5-FU. The availability of a compound able to amplify 5-Fu activity while significantly hampering the invasive phenotype of breast cancer should provide invaluable benefits, namely if we consider that this compound is substantially deprived of side-effects

    The use of D-chiro-inositol in clinical practice

    Get PDF
    OBJECTIVE: D-chiro-Inositol has been widely used in clinical practice to induce ovulation in women with polycystic ovary syndrome. Only recent evidence established that this molecule acts through two different mechanisms, with potentially different outcomes. On the one hand, under a metabolic perspective, D-chiro-Inositol improves insulin signaling, thus restoring physiological insulin levels in resistant subjects. On the other hand, at a cellular level, it downregulates the expression of steroidogenic enzyme aromatase, which is responsible for the conversion of androgens to estrogens. MATERIALS AND METHODS: We reviewed current literature in different databases, searching for D-chiro-Inositol in relation with one of the following keywords: myo-inositol, PCOS, infertility, insulin resistance, aromatase, androgen and inositol, testosterone, estrogen and inositol, estradiol, hypogonadotropic hypogonadism, fat tissue, estrogens and cancer, anovulation, uterine myoma, endometriosis, endometrial hyperplasia. RESULTS: D-Chiro-Inositol treatment may be helpful in restoring physiological hormonal levels in various clinical disorders. However, D-Chiro-Inositol intervention should be carefully designed to avoid possible undesired side effects stemming from its multiple mechanisms of action. CONCLUSIONS: We evaluated the optimal D Chiro-Inositol administration for different pathologies, defining dosages and timing. Even though further studies are required to validate our preliminary results, this paper is primarily intended to guide researchers through some of the pathways of D-Chiro-Inositol

    A phenomenological analysis of antiproton interactions at low energies

    Get PDF
    We present an optical potential analysis of the antiproton-proton interactions at low energies. Our optical potential is purely phenomenological, and has been parametrized on data recently obtained by the Obelix Collaboration at momenta below 180 MeV/c. It reasonably fits annihilation and elastic data below 600 MeV/c, and allows us for an evaluation of the elastic cross section and rho-parameter down to zero kinetic energy. Moreover we show that the mechanism that depresses antiproton-nucleus annihilation cross sections at low energies is present in antiproton-proton interactions too.Comment: 10 pages, 4 figure

    Some comments on nˉp\bar n p-annihilation branching ratios into ππ\pi \pi-, KˉK\bar K K- and πη\pi \eta-channels

    Full text link
    We give some remarks on the nˉp\bar n p-partial branching ratios in flight at low momenta of antineutron, measured by OBELIX collaboration. The comparison is made to the known branching ratios from the ppˉp \bar p-atomic states. The branching ratio for the reaction nˉp→π+π0\bar n p \to \pi^+\pi^0 is found to be suppressed in comparison to what follows from the ppˉ p \bar p-data. It is also shown, that there is no so called dynamic I=0-amplitude suppression for the process NNˉ→KKˉN\bar N \to K\bar K.Comment: 8 pages, LaTeX, no figure

    Evaluation of menstrual irregularities after COVID-19 vaccination: Results of the MECOVAC survey

    Get PDF
    We investigated menstrual irregularities after the first and second doses of the COVID-19 vaccine. Women answered a customised online questionnaire (ClinicalTrial.gov ID: NCT05083065) aimed to assess the vaccine type, the phase of the menstrual cycle during which the vaccine was administered, the occurrence of menstrual irregularities after the first and second doses, and how long this effect lasted. We excluded women with gynaecological and non-gynaecological diseases, undergoing hormonal and non-hormonal treatments, in perimenopause or menopause, as well as those who had irregular menstrual cycles in the last 12 months before vaccine administration. According to our data analysis, approximately 50-60% of reproductive-age women who received the first dose of the COVID-19 vaccine reported menstrual cycle irregularities, regardless of the type of administered vaccine. The occurrence of menstrual irregularities seems to be slightly higher (60-70%) after the second dose. Menstrual irregularities after both the first and second doses of the vaccine were found to self-resolve in approximately half the cases within two months. Based on these results, we suggest to consider these elements during the counselling of women who receive the COVID-19 vaccine, letting them know about the potential occurrence of temporary and self-limiting menstrual cycle irregularities in the subsequent month(s)
    • …
    corecore