5 research outputs found

    Algebraic Connectivity and Degree Sequences of Trees

    Get PDF
    We investigate the structure of trees that have minimal algebraic connectivity among all trees with a given degree sequence. We show that such trees are caterpillars and that the vertex degrees are non-decreasing on every path on non-pendant vertices starting at the characteristic set of the Fiedler vector.Comment: 8 page

    Graphs with Given Degree Sequence and Maximal Spectral Radius

    Get PDF
    We describe the structure of those graphs that have largest spectral radius in the class of all connected graphs with a given degree sequence. We show that in such a graph the degree sequence is non-increasing with respect to an ordering of the vertices induced by breadth-first search. For trees the resulting structure is uniquely determined up to isomorphism. We also show that the largest spectral radius in such classes of trees is strictly monotone with respect to majorization.Comment: 12 pages, 4 figures; revised version. Important change: Theorem 3 (formely Theorem 7) now states (and correctly proofs) the majorization result only for "degree sequences of trees" (instead for general connected graphs). Bo Zhou from the South China Normal University in Guangzhou, P.R. China, has found a counter-example to the stronger resul

    Faber-Krahn Type Inequalities for Trees

    Get PDF
    The Faber-Krahn theorem states that among all bounded domains with the same volume in Rn{\mathbb R}^n (with the standard Euclidean metric), a ball that has lowest first Dirichlet eigenvalue. Recently it has been shown that a similar result holds for (semi-)regular trees. In this article we show that such a theorem also hold for other classes of (not necessarily non-regular) trees. However, for these new results no couterparts in the world of the Laplace-Beltrami-operator on manifolds are known.Comment: 19 pages, 5 figure

    Synchronization of networks with prescribed degree distributions

    Full text link
    We show that the degree distributions of graphs do not suffice to characterize the synchronization of systems evolving on them. We prove that, for any given degree sequence satisfying certain conditions, there exists a connected graph having that degree sequence for which the first nontrivial eigenvalue of the graph Laplacian is arbitrarily close to zero. Consequently, complex dynamical systems defined on such graphs have poor synchronization properties. The result holds under quite mild assumptions, and shows that there exists classes of random, scale-free, regular, small-world, and other common network architectures which impede synchronization. The proof is based on a construction that also serves as an algorithm for building non-synchronizing networks having a prescribed degree distribution.Comment: v2: A new theorem and a numerical example added. To appear in IEEE Trans. Circuits and Systems I: Fundamental Theory and Application

    Largest Laplacian Eigenvalue and Degree Sequences of Trees

    Get PDF
    We investigate the structure of trees that have greatest maximum eigenvalue among all trees with a given degree sequence. We show that in such an extremal tree the degree sequence is non-increasing with respect to an ordering of the vertices that is obtained by breadth-first search. This structure is uniquely determined up to isomorphism. We also show that the maximum eigenvalue in such classes of trees is strictly monotone with respect to majorization.Comment: 9 pages, 2 figure
    corecore