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FABER-KRAHN TYPE INEQUALITIES FOR TREES

TÜRKER BIYIKOĞLU AND JOSEF LEYDOLD

Abstract. The Faber-Krahn theorem states that among all boun-
ded domains with the same volume in R

n (with the standard Eu-
clidean metric), a ball that has lowest first Dirichlet eigenvalue.
Recently it has been shown that a similar result holds for (semi-
)regular trees. In this article we show that such a theorem also hold
for other classes of (not necessarily non-regular) trees. However,
for these new results no couterparts in the world of the Laplace-
Beltrami-operator on manifolds are known.

1. Introduction

In recent years the eigenvectors of the graph Laplacian has received
increasing attention. While its eigenvalues has been investigated for
fifty years [see e.g. 1, 3, 4], there is little known about the eigenvec-
tors. The graph Laplacian can be seen as the discrete analogon of
the continuous Laplace-Beltrami-operator on manifolds. When using
an appropriate definition for the gradiant on a graph rules similar to
the classical Laplace operator can be formulated, e.g. Green’s formula.
During the last years some results for eigenfunctions of the Laplace-
Beltrami-operator have been shown to hold also for eigenvectors of the
graph Laplacian; for example Cheeger-type inequalities [6] or nodal
domain theorems [5] exist. However, it has turned out that there are
small but subtle differences between the discrete and the continuous
case.

The Faber-Krahn inequality is another well-known result. It states
that among all bounded domains with the same volume in R

n (with
the standard Euclidean metric), a ball that has lowest first Dirichlet
eigenvalue [2]. Friedman [7] described the idea of “graph with bound-
ary” (see below). With this concept he was able to formulate Dirichlet
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and Neumann eigenvalue problems for graphs. He also conjectured an
analogon to the Faber-Krahn inequality for regular trees. Amazingly
Friedman’s conjecture is false, i.e. in general these trees are similar but
not equal to “balls”, see [11, 13] for counterexamples and [12] for a
statement of the result. This example (as well as the nodal domain
theorem where also some wrong conjuctures exist, see [5]) shows that
there is much more structure in graphs than in manifolds. Conclusions
from this fact are twofold: First, some care is necessary since one’s in-
tuition, trained on manifolds, may lead to wrong conjectures. On the
other hand we can use the opportunity to go further and try to find
these new structures. It is this second conclusion that motivates this
paper. We want to leave the world of regular graphs and look what
happens when we drop this regularity assumption.

In this article we want to formulate Faber-Krahn type theorems for
trees which need not to be regular any more. Analogous results for the
Laplace-Beltrami-operators on manifolds with non-constant curvature
are rare.

2. Discrete Dirichlet operator and Faber-Krahn

property

Let G(V, E) be a simple (finite) undirected graph with vertex set V

and edge set E. The Laplacian of G is the matrix

∆(G) = D(G)−A(G), (1)

where A(G) denotes the adjacency matrix of the graph and D(G) is the
diagonal matrix whose entries are the vertex degrees, i.e., Dvv = dv,
where dv denotes the degree of vertex v. We write ∆ for short if there is
no risk of confussion. To state a Faber-Krahn type inequality we need
a Dirichlet operator which itself requires the notion of a boundary of a
graph.

A graph with boundary G(V0 ∪ ∂V, E0 ∪ ∂E) consists of a set of inte-
rior vertices V0, boundary vertices ∂V , interior edges E0 that connect
interior vertices, and boundary edges ∂E that join interior vertices
with boundary vertices [7]. There are no edges between two boundary
vertices.

In the following we assume that every boundary vertex has degree
1 and every interior vertex has degree at least 2, i.e. a vertex is a
boundary vertex if and only if it has degree 1. We also assume that
both the set interior vertices V0 and the set of boundary vertices ∂V

are not empty. Balls are of particular interest for our investigations.
A ball B(v0, r) with center v0 and radius r ∈ N is a connected graph
where every boundary vertex w has geodesic distance dist(v0, w) = r.
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A discrete Dirichlet operator is the graph Laplacian ∆ which acts on
vectors only that vanish in all boundary vertices. For a motivation of
this definition see [7].

Definition 1. A discrete Dirichlet operator ∆0 is the graph Laplacian
restricted to interior vertices, i.e.

∆0 = D0 − A0 (2)

where A0 is the adjacency matrix of the graph induced by the interior
vertices, G(V0, E0), and where D0 is the degree matrix with the vertex
degrees in the whole graph G(V0 ∪ ∂V, E0 ∪ ∂E) as its entries.

Notice that ∆0 is obtained from the graph Laplacian ∆ by deleting
all rows and columns that correspond to boundary vertices. Thus any
edges between two boundary vertices have no influence on the Dirichlet
operator. Thus we have eliminated such edges by definition for the sake
of simplicity.

Definition 2 (Faber-Krahn property). We say that a graph with bound-
ary has the Faber-Krahn property if it has lowest first Dirichlet eigen-
value among all graphs with the same “volume” in a particular graph
class.

This definition raises two questions: (1) What is the “volume” of a
graph, and (2) what is an appropriate graph class (besides the trivial
requirement that it must contain the graph G in question)?

Pruss [13] used the number of edges of an unweighted tree as volume
and the class of semi-d-regular trees with boundary. In such a tree
every interior vertex has the same degree d whereas every boundary
vertex has degree 1. This idea can be extended to weighted trees [7],
where edge weights are represented by the reciprocal lengths of arcs in a
geometric representation of the tree. The volume is then defined as the
sum of all the arc lengths of the geometric representation. Friedman
[7] looked at the class of all trees, where the interior vertices have
the same degree d, all interior vertices have length (weight) 1 and all
boundary vertices have length at most 1. Such graphs can be obtained
by cutting out a subset of the geometric reperesentation of an infinite
(unweighted) d-regular tree, see Fig. 1.

In this article we want to formulate Faber-Krahn type theorems
for (non-regular) trees. Analogous results for the Laplace-Beltrami-
operators on manifolds with non-constant curvature are rare. When
we generalize the Faber-Krahn type theorems to arbitrary trees, the
picture of cutting out a graph fails. Instead we have to solve the fol-
lowing problem.
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Figure 1. The class of trees considered by Friedman [7]
can be obtained by cutting connected subsets out of the
geometric representation of an infinite d-regular tree.
(• . . . interior vertices, ◦ . . . boundary vertices)

Problem. Given a class C of graphs, where all graphs have the same
“volume”. Now characterize all graphs in C with the Faber-Krahn
property, i.e., which minimize the first Dirichlet eigenvalue.

Making the graph class C too large leads to quite simple (non-
interesting) graphs. For example, if C is the set of all connected graphs
with a given number of vertices as the “volume” of the graph, then
graphs with the Faber-Krahn property are paths with one terminating
triangle [10]. If we restrict this class to trees, then we arrive at simple
pathes [9, 10]. (To be precise Katsuda and Urakawa [10] used the more
general “non-separation property”.)

It seems natural to use the number of vertices as measure for the
“volume” of a graph. (Notice that this is equivalent to use the num-
ber of edges for an unweighted tree.) Moreover, we will consider only
graph classes where both the total number of interior vertices, |V0|, and
boundary vertices, |∂V |, is fixed. (For semiregular trees this is always
the case when we fix the total number of vertices.) We will drop this
requirement at the end of this article and state some additional results
in Sect. 4. Hence we will look at the following classes of graphs with
boundaries:

T (n,k) = {G is a tree, with |V | = n and |V0| = k} (3)

T
(n,k)

d = {G ∈ T (n,k) : dv ≥ d for all v ∈ V0} (4)
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As it is clear that we always look at a particular class T (n,k) or T
(n,k)

d

we will write T and Td for short; n and k have then to be selected
accordingly. We always assume that 1 ≤ k ≤ n− 1.

Another interesting class is based on so called degree sequences. A
sequence π = (d0, . . . , dn−1) of nonnegative integers is called degree
sequence if there exists a graph G with n vertices for which d0, . . . , dn−1

are the degrees of its vertices. For trees the following characterization
exists.

Lemma 1 ([8]). A degree sequence π = (d0, . . . , dn−1) is a tree sequence
(i.e. a degree sequence of some tree) if and only if every di > 0 and
∑n−1

i=0 di = 2 (n− 1).

Using this notion we can introduce another interesting graph class
for which we want to formulate a Faber-Krahn like theorem,

Tπ = {G is a tree with boundary with degree sequence π} . (5)

Notice that for a particular degree sequence π we have

Tπ ⊆ Tdπ
⊆ T2 = T (6)

where dπ is the minimal degree for interior vertices of in the degree
sequence π.

For class T of all trees we find a simple structure for graphs with the
Faber-Krahn property.

Theorem 1 (Klobüršteltheorem). A tree G has the Faber-Krahn prop-
erty in a class T if and only if G is a star with a long tail, i.e. a comet,
see Fig. 2. G is then uniquely determined up to isomorphism.

Figure 2. A comet has the Faber-Krahn property in
class T . It consists of a star with diameter 2 and a path
attached to it.
(• . . . interior vertices, ◦ . . . boundary vertices)

Graphs with the Faber-Krahn property in Td or Tπ have a richer
structure. For its description we need additional notions. For a tree G

with root v0 the height h(v) of a vertex v is defined by h(v) = dist(v, v0).
For two adjacent vertices v and w with h(w) = h(v) + 1 we call v the
parent of w, and w a child of v. Notice that every vertex v 6= v0 has
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exactly one parent, and every interior vertex w has at least one child
vertex.

Definition 3 (SLO-ordering). Let G(V0 ∪ ∂V, E0 ∪ ∂E) be a tree with
boundary with root v0. Then a well-ordering ≺ of the vertices is called
spiral-like (SLO-ordering for short) if the following holds for all vertices
v, v1, v2, w, w1, w2 ∈ V :

(S1) v ≺ w implies h(v) ≤ h(w);
(S2) if v1 ≺ v2 then for all children w1 of v1 and all children w2 of v2,

w1 ≺ w2;
(S3) if v ≺ w and v ∈ ∂V , then w ∈ ∂V .

It is called spiral-like with increasing degrees (SLO∗-ordering for short)
if additonally the following holds

(S4) if v ≺ w for interior vertices v, w ∈ V0, then dv ≤ dw.

We call trees that have a SLO- or SLO∗-ordering of its vertices SLO-
trees and SLO∗-trees, respectively.

0 1

2

3
4

5

6

7

8

9
10

11

12

13

14

15

16

17
1819

20

21

22

23

24

25

Figure 3. A SLO∗-tree with 8 interior and 18 boundary
vertices. The SLO∗-ordering ≺ is indicated by numbers.
Degree sequence π = (3, 3, 3, 4, 4, 4, 5, 6, 1, 1, . . . , 1).

Notice that SLO-trees are almost balls, that is there exists a radius
r such that dist(v, v0) ∈ {r, r + 1} for all boundary vertices v ∈ ∂V ,
see Fig. 3 for an example. With this concept we can formulate Faber-
Krahn type theorems for the other graph classes, Td and Tπ.

Theorem 2. A graph G has the Faber-Krahn property in a class Td

if and only if it is a SLO∗-tree where exactly one interior vertex has
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degree d◦ = d+
∑

v∈V0
(dv−d) and all other interior vertices have degree

d. G is then uniquely determined up to isomorphism.

Theorem 3. A graph G with degree sequence π has the Faber-Krahn
property in the class Tπ if and only if it is a SLO∗-tree. G is then
uniquely determined up to isomorphism.

As an immediate corollary we get the result of Pruss [13].

Corollary 4 ([13, Thm. 6.2]). In the class of semi-d-regular trees a
graph G has the Faber-Krahn property if and only if it is a SLO∗-tree.
G is then uniquely determined up to isomorphism.

Before we proof these theorems we first want to show that each of
these two classes indead contains a SLO∗-tree.

Lemma 2. Each class Tπ contains a SLO∗-tree that is uniquely deter-
mined up to isomorphism.

Proof. Let π = (d0, d1, . . . , dk−1, dk, . . . , dn−1) be the degree sequence
of Tπ, where 2 ≤ d0 ≤ d1 ≤ . . . ≤ dk−1 and dk = . . . = dn−1 = 1 (i.e.,
correspond to boundary vertices). First we prove the existence of a
SLO∗-tree by induction on |π| (the number of vertices of π). This is
trivial for |π| ≤ 3, since then π = {2, 1, 1} and the corresponding graph
is a path of length 2 and the vertex with degree 2 is choosen as root
for the SLO-ordering.

Now we assume by induction that each Tπ with |π| ≤ n − 1 has
a SLO∗-tree. For |π| = n we construct a new degree sequence π′ by
deleting the last dk−1 − 1 elements from π (which are all equal to 1 as
dk−1−1 < |∂V | = n−k) and by replacing dk−1 by d′k−1 = 1. Obviously
π′ has n− (dk−1− 1) elements. By Lemma 1, π′ is a tree sequence. By
induction Tπ′ has a SLO∗-tree T ′. Let v be the first vertex of T ′ w. r. t.
the SLO-ordering that is adjacent to some boundary vertex w. We
replace w by an interior vertex u and add dk−1 − 1 boundary vertices
and get a tree T . Obviously u has degree dk−1 and thus T has degree
sequence π. Moreover, T has a SLO∗-ordering which can be derived
from the ordering in T ′ by inserting the new vertex u as the last interior
vertex and the new boundary vertices as the last dk−1 − 1 vertices in
the ordering. It is then easy to see that the properties (S1)–(S4) are
satisfied.

To show that two SLO∗-trees G and G′ in a class Tπ are isomorph
we use a function φ that maps the vertex vi in the i-th position in
the SLO∗-ordering of G to the vertex wi in the i-th position in the
SLO∗-ordering of G′. By the properities of the SLO∗-ordering, φ is an
isomorphism, as vi and wi have the same degree and the images of all
children of vi are exactly the children of wi. The latter can be seen by
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looking on all interior vertices of G in the reverse SLO∗-ordering. Thus
the proposition follows. �

3. Proof of the Theorems

We first recall some basic results. By definition the Laplace operator
∆ is symmetric. Its associate Rayleigh quotient on real valued functions
f on V is the fraction

RG(f) =
〈∆f, f〉

〈f, f〉
=

∑

(u,v)∈E(f(u)− f(v))2

∑

v∈V f(v)2
. (7)

For the Dirichlet operator ∆0 we get a similar Rayleigh quotient. How-
ever, it is much simpler to consider RG(f) again but restrict the set of
functions f such that f(v) = 0 for all boundary vertices v ∈ ∂V . We
denote the first Dirichlet eigenvalue of ∆0(G) by λ(G). The following
proposition states a well-known fact about Rayleigh quotients.

Proposition 3. For a graph with boundary G(V0 ∪ ∂V, E0 ∪ ∂E) we
have

λ(G) = min
f∈S

RG(f) = min
f∈S

〈∆f, f〉

〈f, f〉
(8)

where S is the set of all real-valued functions on V with the constraint
f
∣

∣

∂V
= 0. Moreover, if RG(f) = λ(G) for a function f ∈ S, then f is

an eigenfunction to the first Direchlet eigenvalue of ∆0.

For eigenfunctions of the Dirichlet operator the following remarkable
proposition holds.

Proposition 4. Let G(V0 ∪ ∂V, E0 ∪ ∂E) be a connected graph with
boundary and f an eigenfunction to some eigenvalue λ of the Dirichlet
operator. Let bv denote the boundary vertices adjacent to v, i.e. bv =
|{w ∈ ∂V : (v, w) ∈ E}|. Then

λ =

∑

v∈V bv f(v)
∑

v∈V f(v)
.

Proof. Let 1 = (1, . . . , 1)′ and iv = |{w ∈ V0 : (v, w) ∈ E}| be the
number of interior vertices adjacent to v. Thus bv +iv = dv. A straight-
forward computation gives

〈1, ∆0f〉 =
∑

v∈V0
dv f(v)−

∑

v∈V0

∑

(v,w)∈E
w∈V0

f(w)

=
∑

v∈V0
dv f(v)−

∑

w∈V0
f(w)

∑

(w,v)∈E
v∈V0

1

=
∑

v∈V0
dv f(v)−

∑

w∈V0
iw f(w) =

∑

v∈V0
bv f(v) .

Since f is an eigenfunction we find 〈1, ∆0f〉 = λ
∑

v∈V0
f(v). As f(v) =

0 for all boundary vertices v ∈ ∂V the result follows. �
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Proposition 5 (Friedman [7]). Let G(V0∪∂V, E0∪∂E) be a connected
graph with boundary.

(1) ∆0(G) is a positive operator, i.e. λ(G) > 0.
(2) An eigenfunction f to the eigenvalue λ(G) is either positive or

negative on all interior vertices of G.
(3) λ(G) is monotone in G, i.e. if G ⊂ G′ then λ(G) > λ(G′).
(4) λ(G) is a simple eigenvalue.

Remark. Let T be a spannig tree of a graph G. By Prop. 5 the first
Dirichlet eigenvalue of the tree class T ∈ T is a lower bound for λ(G).

The main techniques for proving our theorems is rearranging of
edges. We need two different types of rearrangement steps that we
call switching and shifting, respectively, in the following.

Lemma 6 (Switching, see also [11, Lemma 5]). Let G(V, E) be a tree
with boundary in some Tπ. Let (v1, u1), (v2, u2) ∈ E be edges such that
u2 is in the geodesic path from v1 to v2, but u1 is not, see Fig. 4. Then
by replacing edges (v1, u1) and (v2, u2) by the edges (v1, v2) and (u1, u2)
we get a new tree G′(V, E ′) which is also contained in Tπ with the same
set of boundary vertices. Moreover, we find for a function f ∈ S

RG′(f) ≤ RG(f) (9)

whenever f(v1) ≥ f(u2) and f(v2) ≥ f(u1). Inequality (9) is strict if
both inequalities are strict.

u1 v1 u2 v2

Figure 4. Switching: edges (v1, u1) and (v2, u2) are re-
placed by edges (v1, v2) and (u1, u2)

Proof. Since by assumption u2 is in the geodesic path from v1 to v2 and
u1 is not, G′(V, E ′) again is a tree. The set of vertices does not change
by construction. Moreover, since this switching does not change the
degrees of the vertices, the degree sequence remains unchanged. To
verify inequality (9) we have to compute the effects of removing and
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inserting edges and get

〈∆(G′)f, f〉 − 〈∆(G)f, f〉 =
[

(f(v1)− f(v2))
2 + (f(u1)− f(u2))

2
]

−
[

(f(v1)− f(u1))
2 + (f(v2)− f(u2))

2
]

= 2 (f(u1)− f(v2)) · (f(v1)− f(u2))

≤ 0 ,

where last inequality is strict if both inequalities f(v1) ≥ f(u2) and
f(v2) ≥ f(u1) are strict. Thus the proposition follows. �

Corollary 5. Let G(V, E) be a tree with boundary in some Tπ and let
G′(V, E ′) be a tree obtained from G by applying Switching as defined
in Lemma 6. If f is a non-negative eigenfunction to the first Dirich-
let eigenvalue of G then λ(G′) ≤ λ(G) whenever f(v1) ≥ f(u2) and
f(v2) ≥ f(u1). Moreover, λ(G′) < λ(G) if one of these two inequalities
is strict.

Proof. The first inequality is an immediate consequence of Lemma 6
and Prop. 3

λ(G′) ≤ RG′(f) ≤ RG(f) = λ(G).

For the second statement notice that λ(G′) = λ(G) if and only if
RG′(f) = RG(f) and f is an eigenfunction to λ(G′) on G′, since λ(G′)
is simple (Props. 3 and 5). Therefore, if λ(G′) = λ(G) we find

λ(G)f(v1) = ∆(G)f(v1) = dv1
f(v1)− f(u1)−

∑

(v1,w)∈E
w 6=u1

f(w)

= λ(G′)f(v1) = ∆(G′)f(v1) = dv1
f(v1)− f(v2)−

∑

(v1,w)∈E′

w 6=v2

f(w) .

Since the summation is done over the same neighbors of v1 in this equa-
tion we find f(u1) = f(v2). Analogously we derive from ∆(G)f(u1) =
∆(G′)f(u1), f(v1) = f(u2). Thus the proposition follows. �

Remark. Lemma 6 and Cor. 5 hold analogously for arbitrary graphs.

Lemma 7 (Shifting). Let G(V, E) be a tree with boundary in some
graph class T . Let (u, v1) ∈ E be an edge and v2 ∈ V some vertex
such that u is not in the geodesic path from v1 to v2, Fig. 5. Then by
replacing edge (u, v1) by the edge (u, v2) we get a new tree G′(V, E ′)
which is also contained in T . If v2 ∈ V0 is an interior vertex then the
number of boundary vertices remains unchanged. Moreover, we find for
a non-negative function f ∈ S

RG′(f) ≤ RG(f) (10)
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if and only if f(v1) ≥ f(v2). The inequality is strict if f(v1) > f(v2).

Notice that if G is in some class Td (or Tπ) then in general G′ need
not be a member of this graph class any more.

v1 v2

u

Figure 5. Shifting: edge (u, v1) is replaced by edge (u, v2)

Proof. Analogously to the proof of Lemma 6. �

Remark. Lemma 7 holds analogously for arbitrary graphs.

We now can use a sequence of switchings and shiftings to transform
any tree G with boundary in some class Tπ into SLO∗-tree G∗ ∈ Tπ.

Lemma 8. Let G(V, E) be a tree with boundary in some class Tπ. Then
there exists a SLO-tree G′(V, E ′) in Tπ with λ(G′) ≤ λ(G).

Furthermore, if G has the Faber-Krahn property then there exists
already a SLO-ordering ≺ of the vertices (i.e., G is a SLO-tree). If,
moreover, f is a non-negative eigenfunction to λ(G) then v ≺ w implies
f(v) ≥ f(w).

Proof. Let n = |V | and k = |V0| denote the number of vertices and of
interior vertices of G, respectively, and let f be a non-negative eigen-
function to the first Dirichlet eigenvalue of G. We assume that the
vertices of G, V = {v0, v1, . . . , vk−1, vk, . . . , vn−1}, are numbered such
that f(vi) ≥ f(vj) if i < j, i.e., they are sorted with respect to f(v) in
non-increasing order. We define a well-ordering ≺ on V by vi ≺ vj if
and only if i < j.

Now we use a series of switchings to construct the desired new tree
G′. This is done recursively such that we have a ball that has already
the desired SLO-ordering in the center of each intermediate graph. This
ball grows in every recursion step until all vertices of the initial graph
G are used.

We start with the first vertex v0 of this ordered set of vertices. If
v0 is adjacent to v1 there is nothing to do. Else, we check whether
v0 is adjacent to some vertex w with f(w) = f(v1) and v1 ≺ w. If
there exists such a vertex we just exchange the positions of these two
vertices in the ordering of V (and update the indices of the vertices).
(In particular this is the case when v1 is a boundary vertex then by our
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assumptions 0 ≤ f(w) ≤ f(v1) = 0 and thus f(w) = f(v1) = 0 and
this condition is satisfied.) Otherwise, there exists a child vertex u0 of
v0 with v1 ≺ u0 and a path P0,1 from v0 to v1, since G is connected.
There also exist a parent of v1 (which is in this path P0,1 and which
cannot be v0) and some child vertices (which are not in this path).
The latter exist as v1 cannot be a boundary vertex, since one of the
above two cases would apply. Now if u0 ∈ P0,1 then let u1 be one
these child vertices; else let u1 we the parent of v1. As by construction
v0 ≺ v1 ≺ u0, u1 we have f(v0) ≥ f(v1) ≥ f(u0), f(u1) and hence we
can apply Lemma 6, exchange edges (v0, u0) and (v1, u1) by (v0, v1)
and (u0, u1), and get a new graph G1 with RG1

(f) ≤ RG(f) which also
belongs to Tπ.

By this switching step we have exchanged a child of v0 by v1 (if
necessary) which then becomes a child of v0. By the same procedure
we can exchange all other vertices adjacent to v0 with the respective
vertices v2, v3, . . . , vs0

, where s0 = dv0
, and get graphs G2, G3, . . . ,

Gs0
in Tπ with RGi

(f) ≤ RGi−1
(f).

Next we proceed in an analogous manner with all children u of v1

with v1 ≺ u and make all vertices vs0+1, vs0+2, . . . , vs1
adjacent to v1,

where s1 = s0 + dv1
− 1, and get graphs Gs0+1, Gs0+2, . . . , Gs1

. By
processing all interior vertices in this way we get a sequence of graphs

G = G0 → G1 → G2 → . . . → Gk = G′ (11)

in Tπ with

λ(G) = RG0
(f) ≥ RG1

(f) ≥ . . . ≥ RGk
(f) ≥ λ(G′) . (12)

In step Gr−1 → Gr there is either nothing to do (when we assume
that the vertices are already in the proper ordering), or the vertex vr

is made adjacent to vertex vr−1 ≺ vr by a switching step: Let Pr−1,r

be the geodesic path from vr−1 to vr. By construction of our sequence
of graphs we have h(vr−1) ≤ h(vr) in graph Gr−1 and thus the parent
wr of vr must be in Pr−1,r. Moreover, vr cannot be a boundary vertex
(since otherwise we can use the argument from above and we only
had to change the ordering of the vertices) and thus has some child
ur. Furthermore this path either contains some child ur−1 of vr−1,
or it contains the parent of vr−1. In the latter case there exists at
least one child ur−1. Now we can use switching and replace either
edges (vr−1, ur−1) and (vr, ur) by the edges (vr−1, vr) and (ur−1, ur)
(if ur−1 is contained in Pr−1,r) or (otherwise) edges (vr−1, ur−1) and
(wr, vr) by the edges (vr−1, vr) and (ur−1, wr). In both cases we have
can apply Lemma 6 as f(vr−1) ≥ f(vr) ≥ f(ur−1), f(wr) , f(ur). (It
cannot happen that vr is adjacent to some vertex w with w ≺ vr−1.) In
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the consecutive steps edges between vertices u and w with u ≺ w ≺ vr+1

are neither deleted nor inserted any more. Hence λ(G′) ≤ RG′(f) ≤
RG(f) = λ(G).

It remains to show that ≺ is a SLO-ordering of the vertices V in G′.
Property (S3) holds by definition of the ordering ≺. By construction
(S2) holds. Moreover, G′ is built by stepwise adding layers to a ball.
Thus property (S1) holds and the first statement follows.

Now assume that G has the Faber-Krahn property. Then equality
holds in (12) everywhere. Furthermore, f must be an eigenfunction
to the first Dirichlet eigenvalue for every graph Gi in this sequence.
Otherwise, if f is not an eigenfunction of a graph Gi then λ(Gi) <

RGi
(f) = λ(G), by Prop. 3 a contradiction.

For switching step Gr−1 → Gr we have f(vr) ≥ f(ur−1). If f(vr) =
f(ur−1) there would be nothing to do (we only change the positions of
vr and ur−1 in the ordering ≺). Hence we have f(vr) > f(ur−1) and
by Corollary 5, λ(Gr) < λ(Gr−1), a contradiction to the Faber-Krahn
property of G.

The monotinicity property of f follows by the same reasons. �

Lemma 9. Let G(V, E) be a tree with boundary in some Tπ. Then
there exists a SLO∗-tree G∗(V, E∗) in Tπ with λ(G∗) ≤ λ(G).

Proof. Let again n = |V | and k = |V0| denote the number of vertices
and of interior vertices of G, respectively, and let f be a non-negative
eigenfunction to the first Dirichlet eigenvalue of G. Then by Lemma 8
there exists a SLO-tree G′

0 = G′(V, E ′) in Tπ with the SLO-ordering
≺. The vertices of G (and G′) V = {v0, v1, . . . , vk−1, vk, . . . , vn−1} are
numbered such that vi ≺ vj if and only if i < j. Moreover, by the
construction in the proof of Lemma 8 we find f(v) ≥ f(w) if v ≺ w.
The degree sequence of G is given by π = (d0, d1, . . . , dk−1, dk, . . . , dn−1)
such that the degrees di are non-decreasing for 0 ≤ i < k, and dj = 1
for j ≥ k (i.e., correspond to boundary vertices).

Now we start with root v0. If dv0
= d0 (= min0≤i≤k di) then there

is nothing to do. Otherwise, we can use shifting to replace all edges
(v0, vd0+1), (v0, vd0+2), . . . , by the respective edges (v1, vd0+1), (v1, vd0+2),
. . . . As v0 ≺ v1 we have f(v0) ≥ f(v1) and thus we can apply Lemma 7
and get a new graph G′

1 with RG′

1
(f) ≤ RG′(f). Notice that G′

1 is again
a SLO-tree. However, it might happen that the degree sequence has
changed and G′

1 6∈ Tπ.
Next we proceed in the same way with vertex v1. We denote the

degree of a vertex vj in a graph G′
i with index i by d

(i)
vj . Notice that

d
(1)
v1 ≥ min1≤i≤k di = d1. If d

(1)
v1 = d1 there is nothing to do. Otherwise,
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we can use shifting to replace all edges (v1, vs1+1), (v1, vs1+2), . . . , by the
respective edges (v2, vs1+1), (v2, vs1+2), . . . , where s1 = d0 + d1. Again
we can apply Lemma 7 and get a new graph G′

2 with RG′

2
(f) ≤ RG′

1
(f).

We can continue in this way and get a sequence of SLO-trees

G → G′ = G′
0 → G′

1 → G′
2 → . . . → G′

k = G∗ (13)

with

λ(G) = RG(f) ≥ RG′

0
(f) ≥ RG′

1
(f) ≥ . . . ≥ RG′

k
(f) ≥ λ(G∗) . (14)

Notice that we always have d
(r)
vr ≥ dr. This follows from the fact that

∑

j≤r d
(0)
vj ≥

∑

j≤r dj as the right hand side of this inequality is the
minimum of any sum of degrees of j interior vertices of G′. Morever

by our construction,
∑

j≤r d
(r)
vj =

∑

j≤r d
(0)
vj and

∑

j<r d
(r)
vj =

∑

j<r dj.

Hence d
(r)
vr =

∑

j≤r d
(r)
vj −

∑

j<r d
(r)
vj =

∑

j≤r d
(0)
vj −

∑

j<r dj ≥
∑

j≤r dj −
∑

j<r dj = dr. In step G′
r → G′

r+1 there is either nothing to do, or
edges are exchanged such that vertex vr has the desired degree. In
the consecutive steps edges that are incident to a vertex u ≺ vr+1 are
neither deleted nor inserted.

The resulting SLO-tree G∗ has the same degree sequence π as G and
thus belongs to class Tπ. It also satisfies property (S4), i.e. ≺ is a
SLO∗-ordering of the vertices. �

For our theorem on the class Td we need a modified version of this
lemma. To state this new proposition we need a partial ordering of
degree sequences. Let π = (d0, d1, . . . , dk−1, dk, . . . , dn−1) and π′ =
(d′0, d

′
1, . . . , d

′
k′−1, dk′, . . . , dn−1) be two degree sequence of some trees

with the same number of vertices n and respective numbers k and k′

of interior vertices (not necessarily equal). Again we assume that the
first k (and k′, resp.) degrees correspond to the interior vertices and are
ordered non-decreasingly. Then we write π E π′ if the above condition
holds and

∑

j≤r dj ≤
∑

j≤r d′j for all 0 ≤ r < n.

Lemma 10. Let G(V, E) be a tree with boundary with degree sequence
π and let π′ another degree sequence with π′ E π. Then there exists a
SLO∗-tree G∗(V, E∗) in Tπ′ with λ(G∗) ≤ λ(G).

Proof. Completely analogous to the proof of Lemma 9. �

Notice that Lemma 9 is a special case of this lemma as π Eπ. It can
also be applied to prove Theorem 2 for class Td as we immediately have
π◦Eπ with π◦ = (d, d, . . . , d, d◦, 1, . . . , 1) where d◦ = d+

∑

v∈V0
(dv−d).

Next we show that every tree with the Faber-Krahn property has a
SLO∗-ordering.
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Lemma 11. Let G be a SLO-tree with a non-negative eigenfunction f

of λ(G). Then every interior vertex v has a child w with f(w) < f(v).

Proof. First assume v that is not the root of G. Let u be the parent
of v. Then by Lemma 8 f(v) ≤ f(u) and f(v) ≥ f(w) for all children
w of v. Now suppose that f(v) = f(w) for all children of v. Then
λ(G)f(v) = ∆f(v) =

∑

(v,x)∈E(f(v) − f(x)) = f(v) − f(u) ≤ 0, a

contradiction as both f(v) > 0 and λ(G) > 0 by Prop. 5. If v is the
root of G then all vertices adjacent to v are children of v. If we again
suppose for all these children we f(w) = f(v) then we find analogously
λ(G)f(v) = 0, again a contradiction. �

Lemma 12. Let G(V, E) be a SLO∗-tree and f a non-negative eigen-
function to λ(G). Let v and w two vertices v and w with f(v) = f(w).
Then the subtrees Tv and Tw rooted at v and w, respectively, are iso-
morph.

Proof. We prove this lemma by induction from boundary vertices to
the root v0. It is obviously trivial for boundary vertices. Without loss
of generality we assume v ≺ w.

We start with the case where v is not the root v0 of SLO∗-ordering.
Let uv and uw be the parents of v and w, respectively. Then from
∆(G)f(v) and ∆(G)f(w) we get f(uv) = (dv−λ(G)) f(v)−

∑

(v,x)∈E
x 6=uv

f(x)

and f(uw) = (dw − λ(G)) f(w) −
∑

(w,y)∈E
y 6=uw

f(y). By property (S2)

and Lemma 8 we have f(uv) ≥ f(uw) and therefore it follows from
f(v) = f(w),

(dw − dv) f(v) ≤
∑

(w,y)∈E
y 6=uw

f(y)−
∑

(v,x)∈E
x 6=uv

f(x) (15)

where the sums on the right hand side are over all children of w and
v, respectively. Let m be a child of v such that f(m) ≤ f(x) for all
children x of v. Notice that by (S2) x ≺ y and thus by Lemma 8
f(x) ≥ f(y) for all children y of w; in particular f(m) ≥ f(y). Thus
∑

(v,x)∈E
x 6=uv

f(x) ≥ (dv − 1) f(m) and
∑

(w,y)∈E
y 6=uw

f(y) ≤ (dw − 1) f(m).

Consequently
∑

(w,y)∈E
y 6=uw

f(y)−
∑

(v,x)∈E
x 6=uv

f(x) ≤ (dw − dv) f(m) (16)

and by (15) (dw − dv) f(v) ≤ (dw − dv) f(m).
By Prop. 5 and Lemma 11, 0 < f(m) < f(v). By property (S4),

dv ≤ dw. Hence dv = dw. Then the right hand side of (15) (and left
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hand side of (16)) vanishes and f must have the same value for all
children of v and w (in particular f(x) = f(y)). It then follows by
induction that Tv and Tw are isomorph.

The case where v is the root v0 of SLO∗-ordering, remains. Then we
set uv = v1 and all estimations are still valid. Thus the proposition
follows. �

Lemma 13. If a tree G(V, E) with boundary has the Faber-Krahn prop-
erty in some class Tπ, then G is a SLO∗-tree.

Proof. By Lemma 8 G is a SLO-tree. In the proof of Lemma 9 we
have produced the sequence (13) of trees where the inequalities (14)
hold. Since G has the Faber-Krahn property, equality holds in each
of these inequalities. Notice that G′ and G∗ are in class Tπ while all
other graphs G′

i need not. However, for every graph G′
i in this sequence

that belongs to Tπ we have by the Faber-Krahn property λ(G′
i) = λ(G)

and f is also an eigenfunction to the first Dirichlet eigenvalue of Gi.
Otherwise we had λ(Gi) < RGi

(f) = λ(G), a contradiction.
Now suppose there is a graph Gr ∈ Tπ while Gr+1 6∈ Tπ. We denote

the children of vertex vr in Gr by w1, . . . , ws and its parent by ur.
In step G′

r → G′
r+1 we replace the edges (vr, wdr

), . . . , (vr, ws) by
the respective edges (vr+1, wdr

), . . . , (vr+1, ws). Hence s > dr−1, since
otherwise there would be nothing to do and Gr+1 = Gr, a contradiction
to Gr+1 6∈ Tπ. Notice that the neighbors of vr in Gr+1 do not change
any more in the subsequent steps. As f is an eigenfunction to both
Gr and G∗ to the same eigenvalue λ(G) it follows that ∆(G′

r)f(vr) =
∆(G∗)f(vr), i.e.

(s + 1)f(vr)− f(ur)−
s

∑

j=1

f(wj) = drf(vr)− f(ur)−
dr−1
∑

j=1

f(wj)

and thus (s − dr + 1)f(vr) =
∑s

j=dr
f(wj). Since f(vr) ≥ f(w1) ≥

f(wj) ≥ f(ws) ≥ 0 for all j = 1, . . . , s by Lemma 8, we find f(vr) =
f(wj) for all children wj, a contradiction to Lemma 11. If r = 0, i.e. vr

is the root and there is no parent of vr, then same argment and holds
analogously.

Hence there cannot be a graph Gr ∈ Tπ while Gr+1 6∈ Tπ. Therefore
each graph G′

i in sequence (13) belongs to class Tπ and f is an eigen-
function for each of these. We show for each r that Gr is isomorph
to Gr+1 and consequently isomorph to G∗. Thus all these graphs,
in particular G′

0, are SLO∗-trees. Notice that for step G′
r → G′

r+1

we either find Gr = Gr+1, or f(vr) = f(vr+1), since otherwise we
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had RG′

r
(f) > RG′

r+1
(f) by Lemma 7. In the first case there re-

mains nothing to show. In the latter case the subtrees (of both Gr

and Gr+1) rooted at the respective vertices vr and vr+1 are isomorphic
by Lemma 12. As only edges incident to vr are shifted to vr+1 the
isomorphism between Gr and Gr+1 follows. �

Now we are ready to prove our theorems.

Proof of Theorem 3. The necessity of the condition has been shown in
Lemma 13. The sufficiency follows from the fact that SLO∗-trees are
unique determined up to isomorphism (Lemma 2). �

Proof of Theorem 2. Let π = (d0, d1, . . . , dk−1, 1, . . . , 1) be the degree
sequence of G, where d ≤ d0 ≤ d1 ≤ . . . ≤ dk−1 are the degrees for the
interior vertices. Define a new degree sequence by π◦ = (d, d, . . . , d, d◦, 1,
. . . , 1) where d◦ = d +

∑

v∈V0
(dv − d). Then π′ E π and we can apply

Lemma 10. The necessity of the condition follows analogously to the
proof Lemma 13. The sufficiency follows from the fact that SLO∗-trees
are unique determined up to isomorphism (Lemma 2). �

Proof of Theorem 1. This is an immediate corollary of Thm. 2 as T =
T2. �

4. Further Results

One might ask what happens when we relax the conditions in the

class T (n,k) and T
(n,k)

d . We then get the following classes

T (n,·) = {G is a tree, with |V | = n} (17)

T
(n,·)

d = {G ∈ T (n,·) : dv ≥ d for all v ∈ V0} (18)

where we keep the total number of vertices fixed, and

T (·,k) = {G is a tree, with |V0| = k} (19)

T
(·,k)

d = {G ∈ T (·,k) : dv ≥ d for all v ∈ V0} (20)

where we keep the number of interior vertices fixed. Using the argu-
ments from the proofs of our theorems we find the following character-
izations for graphs with the Faber-Krahn property.

Theorem 6. A tree G with boundary has the Faber-Krahn property

(i) in T (n,·) if and only if it is a path with n vertices. (This is the
result of [10].)

(ii) in T
(n,·)

d if and only if it is a SLO∗-tree where exactly one interior
vertex has degree d◦ with d ≤ d◦ < 2 d and all other interior
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vertices have degree d. (This is the SLO∗-tree in T
(n,·)

d with the
greatest number of interior vertices.)

(iii) in T (·,k) if and only if it is a path with k + 2 vertices.

(iv) in T
(·,k)

d if and only if it is a SLO∗-tree where all interior vertices
have degree d.

G is then uniquely determined up to isomorphism.

For the classes Tπ we cannot give a similar theorem. However, we
can ask whether we can compare the least first Dirichlet eigenvalue
in classes with the same number of vertices. From Lemma 10 we can
derive the following result.

Theorem 7. Let π and π′ be two tree sequences with |π| = |π′| and
let G and G′ be trees with the Faber-Krahn property in Tπ and Tπ′,
respectively. If π′ E π then λ(G) ≤ λ(G′) where equality holds if and
only if π = π′.
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68, 1993–1994.

[7] J. Friedman. Some geometric aspects of graphs and their eigen-
functions. Duke Math. J., 69(3):487–525, 1993.

[8] F. Harary. Graph theory. Addison-Wesley, Reading MA, 1969.



Faber-Krahn Type Inequalities for Trees 19

[9] A. Katsuda and H. Urakawa. The first eigenvalue of the discrete
dirichlet problem for a graph. J. Comb. Math. Comb. Comput.,
27:217–225, 1998.

[10] A. Katsuda and H. Urakawa. The Faber-Krahn type isoperimetric
inequalities for a graph. Tohoku Math. J., II. Ser., 51(2):267–281,
1999.

[11] J. Leydold. A Faber-Krahn-type inequality for regular trees.
GAFA, Geom. Funct. Anal., 7(2):364–378, 1997.

[12] J. Leydold. The geometry of regular trees with the Faber-Krahn
property. Discrete Math., 245(1–3):155–172, 2002.

[13] A. R. Pruss. Discrete convolution-rearrangement inequalities and
the Faber-Krahn inequality on regular trees. Duke Math. J., 91
(3):463–514, 1998.

Max-Planck-Institute for Mathematics in the Sciences, Inselstraße

22, D-04103 Leipzig, Germany

E-mail address : tuerker@statistik.wu-wien.ac.at

University of Economics and Business Administration, Department

for Applied Statistics and Data Processing, Augasse 2-6, A-1090 Vi-

enna, Austria

E-mail address : Josef.Leydold@statistik.wu-wien.ac.at


