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Abstract

We describe the structure of those graphs that have largest spec-

tral radius in the class of all connected graphs with a given degree

sequence. We show that in such a graph the degree sequence is

non-increasing with respect to an ordering of the vertices induced

by breadth-first search. For trees the resulting structure is uniquely

determined up to isomorphism. We also show that the largest spec-

tral radius in such classes of trees is strictly monotone with respect to

majorization.

Keywords: adjacency matrix, eigenvectors, spectral radius, degree se-
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1 Introduction

Let G(V, E) be a simple finite undirected graph with vertex set V (G) and
edge set E(G). The eigenvalue of G are the eigenvalues of the adjacency
matrix A(G). The spectral radius of G is the largest eigenvalue of A(G), also
called the index of the graph. When G is connected, A(G) is irreducible and
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by the Perron-Frobenius Theorem (see e.g. [8]) the largest eigenvalue λ(G)
of G is simple and there is a unique positive unit eigenvector. We refer to
such an eigenvector f as the Perron vector of G.

There exists a vast literature that provides upper and lower bounds on
the largest eigenvalue of G given some information about the graph, for
previous results see [5]. Many recent results use the maximum, minimum
or average degrees, e.g., [10, 13]. Some new results are based on the entire
degree sequence, e.g., [15].

The goal of this article is slightly shifted. We want to characterize con-
nected graphs G that have greatest spectral radius in the class of all graphs
with a given degree sequence. We show that in such a graph the degree
sequence is non-increasing with respect to an ordering of the vertices in-
duced by breadth-first search. (Recently similar results have been shown
for the special cases of caterpillars [16] and cycles with spikes [1].) We also
show that the greatest maximum eigenvalue in such classes of trees is strictly
monotone with respect to some partial ordering of degree sequences. The
results are related to the (partly open) problem of finding connected graphs
of maximal spectral radius with given number of vertices and edges (but
arbitrary degree sequences). Brualdi and Solheid [4] have shown that such
graphs have stepwise adjacency matrix. We refer the reader to [6, Sect. 3.5]
for details and further discussion of this and related problems.

The paper is organized as follows: The results of this paper are stated
in Section 2. In Section 3 we prove these theorems by means of a technique
of rearranging graphs which has been developed in [2] for the problem of
minimizing the first Dirichlet eigenvalue within a class of trees. Indeed, we
will discuss the close relationship between this problem and the problem of
finding trees with greatest maximum eigenvalue in Section 4.

2 Degree Sequences and Largest Eigenvalue

Let d(v) denote the degree of vertex v. We call a vertex v with d(v) = 1
a pendant vertex of the graph (and leaf in case of a tree). In the following
n denotes the total number of vertices, i.e., n = |V |. A sequence π =
(d0, . . . , dn−1) of nonnegative integers is called degree sequence if there exists
a graph G with n vertices for which d0, . . . , dn−1 are the degrees of its vertices,
see Melnikov et al. [11] for relevant information. In the entire article we
enumerate the degrees in non-increasing order.

We introduce the following class for which we can provide optimal results
for the greatest maximum eigenvalue.

Cπ = {G is a connected graph with degree sequence π} .
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For the characterization of graphs that have greatest maximum eigenvalue
among all graphs in Cπ we introduce an ordering of the vertices v0, . . . , vn−1 of
a graph by means of breadth-first search: Select a vertex v0 ∈ G and create a
sorted list of vertices beginning with v0; append all neighbors v1, . . . , vd(v0) of
v0 sorted by decreasing degrees; then append all neighbors of v1 that are not
already in this list; continue recursively with v2, v3, . . . until all vertices of G
are processed. In this way we build layers where each vertex v in layer i has
distance i from root v0 which we call its height h(v) = dist(v, v0). Moreover,
v is adjacent to some vertices w in layer i − 1. We call the least one (in the
above breadth-first search) the parent of v and v a child of w. Notice that
one can draw these layers on circles. Hence we call such an ordering spiral
like ordering, see [12].

Definition 1 (BFD-ordering). Let G(V, E) be a connected graph with root
v0. Then a well-ordering ≺ of the vertices is called breadth-first search order-
ing with decreasing degrees (BFD-ordering for short) if the following holds
for all vertices v, w ∈ V :

(B1) if w1 ≺ w2 then v1 ≺ v2 for all children v1 of w1 and v2 of w2, resp.;

(B2) if v ≺ u, then d(v) ≥ d(u).

We call a connected graph that has a BFD-ordering of its vertices a BFD-
graph.

Every graph has for each of its vertices v an ordering with root v that
satisfies (B1). This can be found by a breadth-first search as described
above. However, not all graphs have an ordering that satisfies (B2); consider
the complete bipartite graph K2,3.

Theorem 1. Let G have greatest maximum eigenvalue in class Cπ. Then
there exists a BFD-ordering of V (G) that is consistent with its Perron vector
f in such a way that f(u) > f(v) implies u ≺ v and hence d(u) ≥ d(v).

It is important to note that this condition is not sufficient in general.
Let π = (4, 4, 3, 3, 2, 1, 1), then there exist two BFD-graphs but only one has
greatest maximum eigenvalue, see Figure 1.

Trees are of special interest. Hence we are looking at the class Tπ of all
trees with given sequence π. Notice that sequences π = (d0, . . . , dn−1) is a
degree sequence of a tree if and only if every di > 0 and

∑n−1
i=0 di = 2 (n− 1),

see [7]. In this class there is a single graph with BFD-ordering, see Figure 2.

Theorem 2. A tree G with degree sequence π has greatest maximum eigen-
value in class Tπ if and only if it is a BFD-tree. G is then uniquely determined
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Figure 1: Two BFD-graphs with degree sequence π = (4, 4, 3, 3, 2, 1, 1) that
satisfy the conditions of Theorem 1.
l.h.s.: λ = 3.0918, f = (0.5291, 0.5291, 0.3823, 0.3823, 0.3423, 0.1236, 0.1236),
r.h.s.: λ = 3.1732, f = (0.5068, 0.5023, 0.4643, 0.4643, 0.1773, 0.1583, 0.0559)

0
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Figure 2: A BFD-tree with degree sequence π = (42, 34, 23, 110)

up to isomorphism. The BFD-ordering is consistent with the Perron vector
f of G in such a way that f(u) > f(v) implies u ≺ v.

For a tree with degree sequence π a sharp upper bound on the largest
eigenvalue can be found by computing the corresponding BFD-tree. Obvi-
ously finding this tree can be done in O(n) time if the degree sequence is
sorted.

We define a partial ordering on degree sequences as follows: for two se-
quences π = (d0, . . . , dn−1) and π′ = (d′

0, . . . , d
′
n−1), π 6= π′, we write π ⊳ π′

if and only if
∑j

i=0 di ≤
∑j

i=0 d′
i for all j = 0, . . . n − 1 (recall that the de-

gree sequences are non-increasing). Such an ordering is sometimes called
majorization.

Theorem 3. Let π and π′ two distinct degree sequences of trees with π ⊳ π′.
Let G and G′ be trees with greatest maximum eigenvalues in classes Cπ and
Cπ′, resp. Then λ(G) < λ(G′).

We get the following well-known result as an immediate corollary.

Corollary 4. A tree G has greatest maximum eigenvalue in the class of all
trees with n vertices and k leaves if and only if it is a star with paths of
almost the same lengths attached to each of its k leaves.
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Proof. The tree sequence π∗ = (k, 2, . . . , 2, 1, . . . , 1) is maximal the class of
trees with k pendant vertices w.r.t. ordering ⊳. Thus the statement imme-
diately follows from Theorems 2 and 3.

3 Proof of the Theorems

We recall that λ(G) denotes the maximum eigenvalue of G. Let Nf(v) =
∑

uv∈E f(u). Thus the adjacency matrix A(G) can be defined by (Af)(v) =
Nf (v). The Rayleigh quotient of the adjacency matrix A(G) on vectors f on
V is the fraction

RG(f) =
〈Af, f〉
〈f, f〉 =

∑

v∈V f(v)
∑

uv∈E f(u)
∑

v∈V f(v)2
=

2
∑

uv∈E f(u)f(v)
∑

v∈V f(v)2
. (1)

By the Rayleigh-Ritz Theorem we find the following well-known property for
the spectral radius of G.

Proposition 1 ([8]). Let S denote the set of unit vectors on V . Then

λ(G) = max
f∈S

RG(f) = 2 max
f∈S

∑

uv∈E

f(u)f(v) .

Moreover, if RG(f) = λ(G) for a (positive) function f ∈ S, then f is an
eigenvector corresponding to the largest eigenvalue λ(G) of A(G), i.e., it is
a Perron vector.

The following technical lemma will be useful.

Lemma 2. Let f be the Perron vector of a connected graph G. Then f(u) ≥
f(v) if and only if Nf(u) ≥ Nf (v) . Moreover, for each edge uv ∈ E where
v is a pendant vertex and u is not, λ(G) = f(u)/f(v) and f(u) > f(v).

Proof. The first statement immediately follows from the positivity of the
Perron vector and the fact that f(v) = Nf(v)/λ. For the second statement
notice that the largest eigenvalue of a path with one interior vertex is

√
2.

Thus the result follows by the well-known fact that λ(H) ≤ λ(G) for a
connected subgraph H of G.

The main techniques for proving our theorems is rearranging of edges.
We need two standard types of rearrangement steps that we call switching
and shifting, respectively, in the following.
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Lemma 3 (Switching [9, 14]). Let G(V, E) be a graph in class Cπ with some
edges v1u1 and v2u2. Assume that v1v2, u1u2 /∈ E. Then we get a new graph
G′(V, E ′) with the same degree sequence π by replacing v1u1 and v2u2 with
edges v1v2 and u1u2 ( switching). Let f is a Perron vector of G then we find
λ(G′) ≥ λ(G), whenever f(v1) ≥ f(u2) and f(v2) ≥ f(u1). The inequality is
strict if and only if at least one of these two inequalities is strict.

Proof. By removing and inserting edges we obtain

RG′(f) −RG(f) = 〈A(G′)f, f〉 − 〈A(G)f, f〉

= 2





∑

xy∈E′\E

f(x)f(y) −
∑

uv∈E\E′

f(u)f(v)





= 2 (f(v1)f(v2) + f(u1)f(u2) − f(v1)f(u1) + f(v2)f(u2))

= 2 (f(v1) − f(u2)) · (f(v2) − f(u1))

≥ 0 ,

and hence λ(G′) ≥ RG′(f) ≥ RG(f) = λ(G) by Proposition 1. Moreover,
λ(G′) = λ(G) if and only if f is also an eigenvector corresponding to λ(G′)
on G′ and hence

λ(G)f(v1) = (A(G)f)(v1) = f(u1) +
∑

wv1∈E∩E′

f(w)

= λ(G′)f(v1) = (A(G′)f)(v1) = f(v2) +
∑

wv1∈E∩E′

f(w)

and hence f(u1) = f(v2). Analogously we find f(v1) = f(u2).

Lemma 4 (Shifting [1, 2]). Let G(V, E) be a graph in class Cπ, and let
uv1 ∈ E and uv2 /∈ E. Then we get a new graph G′(V, E ′) by replacing edge
uv1 by the edge uv2 ( shifting). Let f is a Perron vector of G then we find
λ(G′) > λ(G), whenever f(v2) ≥ f(v1).

Proof. Analogously to the proof of Lemma 3 we find λ(G′) ≥ RG′(f) ≥
RG(f) = λ(G). If equality holded then f would also be a Perron vector of
G′ and thus λ(G′)f(v2) =

∑

xv2∈E f(x) +
∑

yv∈E′\E f(y) >
∑

xv2∈E f(x) =

λ(G)f(v2), a contradiction.

Lemma 5. Let f be the Perron vector of a graph G in Cπ. Let u and v be
two vertices with d(u) > d(v). If f(u) < f(v) then G cannot have greatest
maximum eigenvalue in Cπ.
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Proof. Let d(u) − d(v) = c > 0 and assume f(u) < f(v). Then there are
(at least) c neighbors wk of u that are not adjacent to v. When we replace
these edges w1u, . . . , wcu by the edges w1v, . . . , wcv we get a new graph G′

with the same degree sequence π. The neighbors c can be chosen such that
G′ remains connected, since either u and v have a common neighbor or are
adjacent, or we can select any of the neighbors of u. By Lemma 4 we then
have λ(G′) > λ(G) and the statement follows.

Lemma 6. Let f be the Perron vector of a graph G in Cπ. Let vu ∈ E(G)
and vx /∈ E(G) with f(u) < f(x) ≤ f(v). If f(v) ≥ f(w) for all neigbors w
of x, then G cannot have greatest maximum eigenvalue in Cπ.

Proof. Assume that such vertices exist. Construct a new graph G′(V, E ′)
with the same degree sequence π by replacing edges vu and xw by edges vx
and uw. Then by Lemma 3, RG′(f) > RG(f). It remains to show that we
can choose vertex w such that G′ is connected. Then G′ ∈ Cπ and hence G
cannot have the greatest maximum eigenvalue.

First, notice that there must be a neighbor p of x that is not adjacent to
u, since otherwise Nf (x) =

∑

wx∈E f(w) ≤
∑

yu∈E f(y) = Nf (u) and thus by
Lemma 2, f(x) ≤ f(u), a contradiction to our assumptions. Furthermore, x
must have at least two neighbors, since otherwise we had by Lemma 2 and
assumption f(x) > f(u), f(w) = Nf(x) > Nf(u) ≥ f(v), a contradiction to
f(w) ≤ f(v). Since G is connected there is a simple path Pvx = (v, . . . , t, x)
from v to x. Then there are four cases:

(1) If vu /∈ Pvx and ut /∈ E(G), then we set w = t.

(2) Else, if vu /∈ Pvx and ut ∈ E(G), then we set w to one of the neighbors
of x that are not adjacent to u.

(3) Else, if vu ∈ Pvx and all neighbors not equal t are adjacent to u. Then t
cannot be adjacent to u and we set w = t.

(4) Else, vu ∈ Pvx and there exists a neighbor p of x, p 6= t, with up /∈ E(G).
Then we set w = p.

In either case G′ remains connected. Thus the statement follows.

Proof of Theorem 1. Assume that G(V, E) has greatest maximum eigenvalue
in class Cπ. Let f be a Perron vector of G. Create an ordering ≺ by breadth-
first search as follows: Choose the maximum of f as root v0 in layer 0;
append all neighbors v1, . . . , vd(v0) of v0 to the list ordered list; these neighbors
are ordered such that u ≺ v whenever d(u) > d(v), or d(u) = d(v) and
f(u) > f(v) (in the remaining case the ordering can be arbitrary); then
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continue recursively with all vertices v1, v2, . . . until all vertices of G are
processed. Notice that (B1) holds for this ordering.
We first show that u ≺ v implies f(u) ≥ f(v) for all u, v ∈ V . Suppose there
exist two vertices vi and vj with vi ≺ vj but f(vi) < f(vj). Notice that vi

cannot be root v0. Let wi and wj be the parents of vi and vj, respectively.
By construction there are two cases: (i) wi = wj , or (ii) wi ≺ wj. For case
(i) we have d(vi) ≥ d(vj) by construction and d(vi) ≤ d(vj) by Lemma 5 and
thus d(vi) = d(vj). But then we had vi ≻ vj by the definition of our ordering,
since f(vi) < f(vj), a contradiction.
For case (ii) assume that vj is maximal, i.e., for any other vertex u with this
property we have f(u) ≤ f(vj). Let vi (≺ vj) be the first vertex (in the
ordering of ≺) with f(vi) < f(vj). Hence f(u) ≥ f(vj) for each u ≺ vi and
we find f(wi) ≥ f(vj) > f(vi). Note that vj cannot be adjacent neither to
wi nor to v0 as we then had case (i). Thus f(wi) ≥ f(uj) for all neighbors uj

of vj, since otherwise vj were not maximal. Hence G can not have greatest
maximum eigenvalue by Lemma 6, a contradiction. At last we have to show
Property (B2). However, this follows immediately from Lemma 5.

Proof of Theorem 2. The necessity condition is an immediate corollary of
Theorem 1. To show that two BFD-trees G and G′ in class Tπ are isomorphic
we use a function φ that maps the vertex vi in the i-th position in the BFD-
ordering of G to the vertex wi in the i-th position in the BFD-ordering of G′.
By the properties (B1) and (B2) φ is an isomorphism, as vi and wi have the
same degree and the images of neighbors of vi in the next layer are exactly
the neigbors of wi in the next layer. The latter can be seen by looking on all
vertices of G in the reverse BFD-ordering. Thus the proposition follows.

Proof of Theorem 3. Let π = (d0, . . . , dn−1) and π′ = (d′
0, . . . , d

′
n−1) be two

non-increasing tree sequences with π ⊳ π′, i.e., π 6= π′,
∑j

i=0 di ≤
∑j

i=0 d′
i,

and
∑n−1

i=0 di =
∑n−1

i=0 d′
i = 2(n−1). Let G have greatest maximum eigenvalue

in Tπ. By Theorem 2 G has a BFD-ordering that is consistent with f , i.e.,
f(u) > f(v) implies u ≺ v.
First assume that π and π′ differ only in two positions k and l with d′

k = dk+1
and d′

l = dl − 1 (and hence k < l and dk ≥ dl > 1). Let vk and vl be
the corresponding vertices in G. Without loss of generality we assume that
f(vk) ≥ f(vl). Since G is a tree and d(vl) ≥ 2, there exists a neighbor w of
vl in layer h(vl) + 1 that is not adjacent to vk. Thus we can shift edge vlw
by vkw and get a new tree G′ with degree sequence π′ and λ(G′) > λ(G) by
Lemma 4.
For two tree sequences π ⊳ π′ we can find a sequence of tree sequences π =
π0 ⊳ π1 ⊳ · · · ⊳ πk = π′ where πi−1 and πi (i = 1, . . . , n) differ only in two
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positions as described above by the following recursive procedure. For πi−1

let j be the first position in which πi−1 and π′ differ. Then d
(i−1)
j < d′

j and

we construct πi = (d
(i)
0 , . . . , d

(i)
n−1) by d

(i)
j = d

(i−1)
j + 1, d

(i)
j+1 = d

(i−1)
j+1 − 1, and

d
(i)
l = d

(i−1)
l otherwise. If necessary, πi is then sorted nonincreasingly. Thus

πi again is a tree sequence and the statement follows.

4 Remarks

In general, we can ask the same questions for Perron vectors of generalized
graph Laplacians, i.e., symmetric matrices with non-positive off-diagonal en-
tries. In this paper we showed that switching and shifting operations are
compatible with respect to degree sequences and we used them to find trees
or connected graphs with greatest maximum eigenvalue of the adjacency
matrix. In [2] these operations were applied to construct graphs with the
smallest first eigenvalue of the so called Dirichlet matrix. Here the corre-
sponding minization problems are called Faber-Krahn-type inequalities. We
refer the interested reader to [3] and the references given therein.

One also might ask whether one can find the smallest maximum eigenvalue
in a class Cπ by the same procedure. It is possible to apply shifting in the
proof of Theorem 1 just the “other way round”. We then would arrive at
trees that are constructed by breadth-first search but with increasing vertex
degrees for non-pendant vertices. However, this idea does not work. Figure 3
shows a counterexample.

Figure 3: Two trees with degree sequence (2, 2, 3, 3, 3, 1, 1, 1, 1, 1). The tree
on the l.h.s. has smallest maximum eigenvalue (λ = 2.1010) among all trees
in Cπ. The tree on the r.h.s. has a breadth-first ordering of the vertices with
increasing degree sequences (and thus has lowest first Dirichlet eigenvalue).
However it does not minimize the maximum eigenvalue (λ = 2.1067)

9



Acknowledgment

The authors would like to thank Christian Bey for calling our attention to
eigenvalues of the adjacency matrix of a graph. We thank Gordon Royle and
Brendan McKay for their databases of combinatorial data on graphs. This
was of great help to find the two counterexamples in Figures 1 and 3. We
also thank the Institute for Bioinformatics of the University in Leipzig for the
hospitality and for providing a scientific working environment while we wrote
down this paper. The first author is partially supported by the Belgian Pro-
gramme on Interuniversity Attraction Poles, initiated by the Belgian Federal
Science Policy Office, and a grant Action de Recherche Concertée (ARC) of
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