We investigate the structure of trees that have greatest maximum eigenvalue
among all trees with a given degree sequence. We show that in such an extremal
tree the degree sequence is non-increasing with respect to an ordering of the
vertices that is obtained by breadth-first search. This structure is uniquely
determined up to isomorphism. We also show that the maximum eigenvalue in such
classes of trees is strictly monotone with respect to majorization.Comment: 9 pages, 2 figure