335 research outputs found

    A Synthetic Model of the Putative Fe(II)-Iminobenzosemiquinonate Intermediate in the Catalytic Cycle of \u3cem\u3eo\u3c/em\u3e-Aminophenol Dioxygenases

    Get PDF
    The oxidative ring cleavage of aromatic substrates by nonheme Fe dioxygenases is thought to involve formation of a ferrous–(substrate radical) intermediate. Here we describe the synthesis of the trigonal-bipyramdial complex Fe(Ph2Tp)(ISQtBu) (2), the first synthetic example of an iron(II) center bound to an iminobenzosemiquinonate (ISQ) radical. The unique electronic structure of this S = 3/2 complex and its one-electron oxidized derivative ([3]+) have been established on the basis of crystallographic, spectroscopic, and computational analyses. These findings further demonstrate the viability of Fe2+–ISQ intermediates in the catalytic cycles of o-aminophenol dioxygenases

    Dioxygen Reactivity of Biomimetic Fe(II) Complexes with Noninnocent Catecholate, \u3cem\u3eo\u3c/em\u3e-Aminophenolate, and \u3cem\u3eo\u3c/em\u3e-Phenylenediamine Ligands

    Get PDF
    This study describes the O2 reactivity of a series of high-spin mononuclear Fe(II) complexes each containing the facially coordinating tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (Ph2TIP) ligand and one of the following bidentate, redox-active ligands: 4-tert-butylcatecholate (tBuCatH–), 4,6-di-tert-butyl-2-aminophenolate (tBu2APH–), or 4-tert-butyl-1,2-phenylenediamine (tBuPDA). The preparation and X-ray structural characterization of [Fe2+(Ph2TIP)(tBuCatH)]OTf, [3]OTf and [Fe2+(Ph2TIP)(tBuPDA)](OTf)2, [4](OTf)2 are described here, whereas [Fe2+(Ph2TIP)(tBu2APH)]OTf, [2]OTf was reported in our previous paper [Bittner et al., Chem.—Eur. J. 2013, 19, 9686–9698]. These complexes mimic the substrate-bound active sites of nonheme iron dioxygenases, which catalyze the oxidative ring-cleavage of aromatic substrates like catechols and aminophenols. Each complex is oxidized in the presence of O2, and the geometric and electronic structures of the resulting complexes were examined with spectroscopic (absorption, EPR, Mössbauer, resonance Raman) and density functional theory (DFT) methods. Complex [3]OTf reacts rapidly with O2 to yield the ferric-catecholate species [Fe3+(Ph2TIP)(tBuCat)]+ (3ox), which undergoes further oxidation to generate an extradiol cleavage product. In contrast, complex [4]2+ experiences a two-electron (2e–), ligand-based oxidation to give [Fe2+(Ph2TIP)(tBuDIBQ)]2+ (4ox), where DIBQ is o-diiminobenzoquinone. The reaction of [2]+ with O2 is also a 2e– process, yet in this case both the Fe center and tBu2AP ligand are oxidized; the resulting complex (2ox) is best described as [Fe3+(Ph2TIP)(tBu2ISQ)]+, where ISQ is o-iminobenzosemiquinone. Thus, the oxidized complexes display a remarkable continuum of electronic structures ranging from [Fe3+(L2–)]+ (3ox) to [Fe3+(L•–)]2+ (2ox) to [Fe2+(L0)]2+ (4ox). Notably, the O2 reaction rates vary by a factor of 105 across the series, following the order [3]+ \u3e [2]+ \u3e [4]2+, even though the complexes have similar structures and Fe3+/2+ redox potentials. To account for the kinetic data, we examined the relative abilities of the title complexes to bind O2 and participate in H-atom transfer reactions. We conclude that the trend in O2 reactivity can be rationalized by accounting for the role of proton transfer(s) in the overall reaction

    Synthetic, Spectroscopic and DFT Studies of Iron Complexes with Iminobenzo(semi)quinone Ligands: Implications for o-Aminophenol Dioxygenases

    Get PDF
    The oxidative CC bond cleavage of o-aminophenols by nonheme Fe dioxygenases is a critical step in both human metabolism (the kynurenine pathway) and the microbial degradation of nitroaromatic pollutants. The catalytic cycle of o-aminophenol dioxygenases (APDOs) has been proposed to involve formation of an FeII/O2/iminobenzosemiquinone complex, although the presence of a substrate radical has been called into question by studies of related ring-cleaving dioxygenases. Recently, we reported the first synthesis of an iron(II) complex coordinated to an iminobenzosemiquinone (ISQ) ligand, namely, [Fe(Tp)(tBuISQ)] (2 a; where Tp=hydrotris(3,5-diphenylpyrazol-1-yl)borate and tBuISQ is the radical anion derived from 2-amino-4,6-di-tert-butylphenol). In the current manuscript, density functional theory (DFT) calculations and a wide variety of spectroscopic methods (electronic absorption, Mössbauer, magnetic circular dichroism, and resonance Raman) were employed to obtain detailed electronic-structure descriptions of 2 a and its one-electron oxidized derivative [3 a]+. In addition, we describe the synthesis and characterization of a parallel series of complexes featuring the neutral supporting ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (TIP). The isomer shifts of about 0.97 mm s−1 obtained through Mössbauer experiments confirm that 2 a (and its TIP-based analogue [2 b]+) contain FeII centers, and the presence of an ISQ radical was verified by analysis of the absorption spectra in light of time-dependent DFT calculations. The collective spectroscopic data indicate that one-electron oxidation of the FeII–ISQ complexes yields complexes ([3 a]+ and [3 b]2+) with electronic configurations between the FeIII–ISQ and FeII–IBQ limits (IBQ=iminobenzoquinone), highlighting the ability of o-amidophenolates to access multiple oxidation states. The implications of these results for the mechanism of APDOs and other ring-cleaving dioxygenases are discussed

    Synthesis and Structural Characterization of Iron(II) Complexes with Tris(imidazolyl)phosphane Ligands: A Platform for Modeling the 3-Histidine Facial Triad of Nonheme Iron Dioxygenases

    Get PDF
    Several monoiron(II) complexes containing tris(imidazolyl)phosphane (TIP) ligands have been prepared and structurally characterized by using X-ray crystallography and NMR spectroscopy. Two TIP ligands were employed: tris(2-phenylimidazol-4-yl)phosphane (4-TIPPh) and tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphane (2-TIPPh2). These tridentate ligands resemble the 3-histidine (3His) facial triad found recently in the active sites of certain nonheme iron dioxygenases. Three of the reported complexes are designed to serve as convenient precursors to species that model the enzyme–substrate intermediates of 3His dioxygenases; thus, each contains an [Fe(κ3-TIP)]2+ unit in which the remaining coordination sites are occupied by easily displaced ligands, such as solvent molecules and/or carboxylate groups. The viability of these complexes as precursors was demonstrated through the synthesis of TIP-based complexes with β-diketonate and salicylate ligands that represent faithful models of β-diketone dioxygenase and salicylate 1,2-dioxygenase, respectively

    Fe(II) Complexes That Mimic the Active Site Structure of Acetylacetone Dioxygenase: O\u3csub\u3e2\u3c/sub\u3e and NO Reactivity

    Get PDF
    Acetylacetone dioxygenase (Dke1) is a bacterial enzyme that catalyzes the dioxygen-dependent degradation of β-dicarbonyl compounds. The Dke1 active site contains a nonheme monoiron(II) center facially ligated by three histidine residues (the 3His triad); coordination of the substrate in a bidentate manner provides a five-coordinate site for O2 binding. Recently, we published the synthesis and characterization of a series of ferrous β-diketonato complexes that faithfully mimic the enzyme–substrate intermediate of Dke1 (Park, H.; Baus, J.S.; Lindeman, S.V.; Fiedler, A.T. Inorg. Chem.2011, 50, 11978–11989). The 3His triad was modeled with three different facially coordinating N3 supporting ligands, and substituted β-diketonates (acacX) with varying steric and electronic properties were employed. Here, we describe the reactivity of our Dke1 models toward O2 and its surrogate nitric oxide (NO), and report the synthesis of three new Fe(II) complexes featuring the anions of dialkyl malonates. Exposure of [Fe(Me2Tp)(acacX)] complexes (where R2Tp = hydrotris(pyrazol-1-yl)borate with R-groups at the 3- and 5-positions of the pyrazole rings) to O2 at −70 °C in toluene results in irreversible formation of green chromophores (λmax ∼750 nm) that decay at temperatures above −60 °C. Spectroscopic and computational analyses suggest that these intermediates contain a diiron(III) unit bridged by a trans μ-1,2-peroxo ligand. The green chromophore is not observed with analogous complexes featuring Ph2Tp and PhTIP ligands (where PhTIP = tris(2-phenylimidazoly-4-yl)phosphine), since the steric bulk of the phenyl substituents prevents formation of dinuclear species. While these complexes are largely inert toward O2, Ph2Tp-based complexes with dialkyl malonate anions exhibit dioxygenase activity and thus serve as functional Dke1 models. The Fe/acacX complexes all react readily with NO to yield high-spin (S = 3/2) {FeNO}7 adducts that were characterized with crystallographic, spectroscopic, and computational methods. Collectively, the results presented here enhance our understanding of the chemical factors involved in the oxidation of aliphatic substrates by nonheme iron dioxygenases

    Adrenal myelolipoma: Operative indications and outcomes

    Get PDF
    Background: Adrenal myelolipoma (AM) is a benign lesion for which adrenalectomy is infrequently indicated. We investigated operative indications and outcomes for AM in a large single-institution series. Subjects and Methods: A retrospective cohort study of prospectively collected data was conducted. Patients (≥16 years of age) who underwent adrenalectomy in the Division of General Surgery at Barnes-Jewish Hospital (1993–2010) were grouped by operative indication (myelolipoma versus other pathology) and compared using nonparametric tests (α<0.05). Results: Sixteen patients (4.0%) had myelolipomas resected out of 402 patients who underwent adrenalectomy. Fourteen patients with suspected AM underwent adrenalectomy, 13 (93%) of whom had AM confirmed on pathology. Indications for adrenalectomy were abdominal or flank pain, large tumor size (>8 cm), atypical radiologic appearance, and/or inferior vena cava compression. Three patients with suspected other adrenal lesions had AM confirmed on final pathology. Operative approach was laparoscopic in 15 cases and open in 1 case of a 21-cm lesion. Patients who underwent laparoscopic adrenalectomy for AM (n=15) or other adrenal pathology (n=343) were similar with respect to age, gender, American Society of Anesthesiologists classification, prior abdominal operation, tumor side, operative time, conversion rate, estimated blood loss, intraoperative complications, hospital length of stay, and 30-day morbidity. However, patients with resected AM had a higher body mass index (36.5±8.1 kg/m(2) versus 30.1±7.5 kg/m(2); P<.01) and a larger preoperative tumor size (8.4±3.0 cm versus 3.1±1.7 cm; P<.01). Conclusions: Laparoscopic adrenalectomy may be appropriate for patients with a presumptive diagnosis of AM and abdominal or flank pain, large tumor size, and/or uncertain diagnosis after imaging. Outcomes and morbidity following LA for AM and other adrenal pathology appear comparable

    Analysis of Expression Patterns: The Scope of the Problem, the Problem of Scope

    Get PDF
    Studies of the expression patterns of many genes simultaneously lead to the observation that even in closely related pathologies, there are numerous genes that are differentially expressed in consistent patterns correlated to each sample type. The early uses of the enabling technology, microarrays, was focused on gathering mechanistic biological insights. The early findings now pose another clear challenge, finding ways to effectively use this kind of information to develop diagnostics

    Redox Couples of Inducible Nitric Oxide Synthase

    Get PDF
    We report direct electrochemistry of the iNOS heme domain in a DDAB film on the surface of a basal plane graphite electrode. Cyclic voltammetry reveals Fe^(III/II) and Fe^(II/I) couples at −191 and −1049 mV (vs Ag/AgCl). Imidazole and carbon monoxide in solution shift the Fe^(III/II) potential by +20 and +62 mV, while the addition of dioxygen results in large catalytic waves at the onset of Fe^(III) reduction. Voltammetry at higher scan rates (with pH variations) reveals that the Fe^(III/II) cathodic peak can be resolved into two components, which are attributable to Fe^(III/II) couples of five- and six-coordinate hemes. Digital simulation of our experimental data implicates water dissociation from the heme as a gating mechanism for ET in iNOS

    Analysis of Expression Patterns: The Scope of the Problem, the Problem of Scope

    Get PDF
    Studies of the expression patterns of many genes simultaneously lead to the observation that even in closely related pathologies, there are numerous genes that are differentially expressed in consistent patterns correlated to each sample type. The early uses of the enabling technology, microarrays, was focused on gathering mechanistic biological insights. The early findings now pose another clear challenge, finding ways to effectively use this kind of information to develop diagnostics
    • …
    corecore