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Abstract: 

The oxidative C-C bond cleavage of o-aminophenols by nonheme Fe 

dioxygenases is a critical step in both human metabolism (the kynurenine 

pathway) and the microbial degradation of nitroaromatic pollutants. The 

catalytic cycle of o-aminophenol dioxygenases (APDOs) has been proposed to 

involve formation of an Fe(II)/O2/iminobenzosemiquinone complex, although 

the presence of a substrate radical has been called into question by studies of 

related ring-cleaving dioxygenases. Recently, we reported the first synthesis 

of an iron(II) complex coordinated to an iminobenzosemiquinone (ISQ) 

ligand, namely, [Fe(Ph2Tp)(ISQtBu)] (2a; where Ph2Tp = hydrotris(3,5-

diphenylpyrazol-1-yl)borate and ISQtBu is the radical anion derived from 2-

amino-4,6-di-tert-butylphenol). In the current manuscript, density functional 

theory (DFT) calculations and a wide variety of spectroscopic methods 

(electronic absorption, Mössbauer, magnetic circular dichroism, and 

resonance Raman) were employed to obtain detailed electronic-structure 

descriptions of 2a and its one-electron oxidized derivative [3a]+. In addition, 

we describe the synthesis and characterization of a parallel series of 

complexes featuring the neutral supporting ligand tris(4,5-diphenyl-1-

methylimidazol-2-yl)phosphine (Ph2TIP). The isomer shifts of ~0.97 mm/s 

obtained via Mössbauer experiments confirm that 2a (and its Ph2TIP-based 

analogue [2b]+) contain Fe(II) centers, and the presence of an ISQ radical 

was verified by analysis of the absorption spectra in light of time-dependent 

DFT calculations. The collective spectroscopic data indicate that one-electron 

oxidation of the Fe2+–ISQ complexes yields complexes ([3a]+ and [3b]2+) 

with electronic configurations between the Fe3+–ISQ and Fe2+–IBQ limits (IBQ 

= iminobenzoquinone), highlighting the ability of o-amidophenolates to access 

multiple oxidation states. The implications of these results for the mechanism 

of APDOs and other ring-cleaving dioxygenases are discussed. 

Introduction 

 A critical step in the microbial degradation of numerous 

aromatic compounds involves oxidative ring scission by a mononuclear 

nonheme Fe dioxygenase.[1] Ring-cleaving dioxygenases have been 

shown to oxidize an impressive array of substrates, including 

catechols, protocatechuates,[2] o-aminophenols,[3] hydroquinones,[4] 

and salicylates.[5] The general catalytic strategy employed by these 

dioxygenases differs substantially from the “textbook” O2-activation 

mechanism exemplified by the cytochrome P450s,[6] methane 

monooxygenase,[7] and α-ketoglutarate-dependent dioxygenases.[8] In 

this latter set of enzymes, O2 is used to generate an iron(IV)-oxo 
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(ferryl) intermediate that performs the demanding hydroxylation of an 

aliphatic substrate. By contrast, extensive experimental and 

computational studies have revealed that the ring-cleaving 

dioxygenase mechanism does not involve high-valent Fe 

intermediates, as illustrated for the extradiol catechol dioxygenases 

(ECDOs) and o-aminophenol dioxygenases (APDOs) in Scheme 1.[2c, 9] 

In both cases, the bidentate substrate coordinates to the Fe(II) center 

as a monoanionic ligand. Displacement of the bound H2O molecules 

facilitates formation of an Fe/O2 adduct capable of reacting directly 

with the bound substrate. The resulting peroxy-bridged intermediate 

undergoes a Criegee rearrangement to generate a lactone, which is 

hydrolyzed by the Fe-OH unit to provide the ring-opened product. 

Several of these intermediates were observed crystallographically in 

different subunits of the enzyme homoprotocatechuate 2,3-

dioxygenase (HPCD).[10] 

 

Scheme 1 
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While there is broad agreement concerning the generic 

mechanism shown in Scheme 1, the electronic structure of the critical 

Fe/O2/substrate intermediate remains disputed. While Fe/O2 adducts 

are normally described as ferric-superoxo species (such as 

intermediate I in Scheme 1), early studies by Lipscomb[11] and Bugg[12] 

lead to the proposal that ring-cleaving dioxygenases proceed instead 

via a superoxo-Fe(II)-(imino)semiquinone species (II). The radical 

character of the substrate was presumed to facilitate reaction with the 

superoxo ligand, thereby overcoming the large kinetic barrier to 

formation of the peroxy intermediate. This hypothesis was partly 

inspired by model studies that had demonstrated the “non-innocent” 

nature of metal-bound catecholates[13] and amidophenolates.[14] [15] [16] 

[17] [18] [19] Subsequent experiments with a substrate analogue featuring 

a cyclopropyl moiety as a radical probe indicated formation of a 

semiquinonate (SQ) radical during the catalytic cycle of MhpC, a well-

studied ECDO.[20] Density functional theory (DFT) analysis by Siegbahn 

further supported this electronic structure description.[21] In addition, 

Emerson et al. demonstrated that a pair of ECDOs, Fe-HPCD and Mn-

MndD, are equally active with either Fe or Mn in their active sites, 

despite the intrinsically different redox potential of the two metal 

ions.[22] This result lead to the conclusion that the Fe (or Mn) oxidation 

state does not change during the catalytic cycle; instead, the metal ion 

only serves to conduct an electron from the bound substrate ligand to 

O2, thus yielding intermediate II directly. 

Despite this large body of evidence, recent studies have 

challenged the prevailing notion that a substrate-based radical is 

generated in the catalytic cycles of ECDOs (and, by extension, other 

ring-cleaving dioxygenases). Firstly, Lipscomb and coworkers 

succeeded in isolating the Fe/O2 adduct of a HPCD mutant (H200N) 

bound to the “unactivated” substrate 4-nitrocatechol. Interrogation 

with EPR and Mössbauer spectroscopies revealed that this species 

contains an Fe3+–O2
•– unit with S = 2 – inconsistent with the presence 

of a SQ ligand.[23] A follow-up study of H200N HPCD with the native 

substrate resulted in the isolation and spectroscopic characterization of 

novel intermediate best described as a hydroperoxo-Fe(III)-

semiquinone species (III in Scheme 1).[24] However, a recent 

computational study by Ye and Neese suggested that this intermediate 

is not catalytically viable.[25] Their calculations of the ECDO mechanism 

found no evidence that a SQ-containing intermediate (either II or III) 
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is required for catalysis. Instead, they favor a mechanism in which the 

ferric-superoxo adduct (I) converts directly to a hydroperoxo-bridged 

species (Scheme 1). The kinetic barrier for this step is lowered by 

concomitant transfer of a proton from the second-sphere histidine 

residue to the nascent peroxo group. 

The development of suitable synthetic models can help resolve 

the ambiguous electronic structures of enzymatic intermediates. In a 

recent communication, we described the synthesis and X-ray structure 

of the five-coordinate (5C) complex 2a (Scheme 2) that represents the 

first synthetic example of an Fe(II) center coordinated a biologically-

relevant (imino)semiquinonate ligand.[26] The supporting ligand in 2a 

is hydrotris(3,5-diphenylpyrazol-1-yl)borate (Ph2Tp), which adequately 

models the facial coordination geometry and monoanionic charge of 

the 2-His-1-carboxylate coordination motif of most ring-cleaving 

dioxygenases.[27] A combination of crystallographic, spectroscopic 

(absorption, EPR), and computational methods were used to confirm 

the existence of the tBuISQ ligand in 2a. The overall spin of 3/2 arises 

from antiferromagnetic (AF) coupling between the high-spin Fe(III) 

center (S = 5/2) and ISQ radical. Using similar techniques, we also 

examined the complex [3a]SbF6 that arises from one-electron 

oxidation of 2a. The X-ray structural data for [3a]+ are consistent with 

the presence of an Fe3+–tBuISQ unit with S = 2, although density 

functional theory (DFT) calculations suggested a certain degree of 

Fe2+–tBuIBQ character (where tBuIBQ is the neutral iminobenzoquinone 

with tert-butyl substituents at the 4- and 6-positions).[26] 

 

Scheme 2 
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In this manuscript, we seek to develop detailed electronic-

structure descriptions of 2a and [3a]+ using an assortment of 

spectroscopic methods, including UV-vis-NIR absorption, Mössbauer, 

magnetic circular dichroism (MCD), and resonance Raman (rR) 

spectroscopies. In addition, we have prepared a parallel series of 

complexes (1b, 2b, and [3b]+) containing the facial N3-donor ligand 

tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine[28] (Ph2TIP; Scheme 

2). X-ray structures of complexes [1b]BPh4 and [3b](OTf)2 are 

presented to complement those already published for 1a, 2a, and 

[3a]SbF6. By employing this neutral supporting ligand, we are able to 

evaluate the role of coordination environment in modulating the 

oxidation states of the Fe center and ISQ ligand. In all cases, the 

spectroscopic data were analyzed with the aid of DFT calculations. By 

elucidating the spectroscopic signatures of these synthetic complexes, 

we anticipate that our results will assist in the interpretation of 

comparable data from the biological systems, thereby allowing 

researchers to determine whether Fe–(I)SQ species are viable 

intermediates in the catalytic cycles of ring-cleaving dioxygenases. 

Results and Analysis 

1. Preparation, Structural Characterization, and 

Electrochemical Properties 

1.A. Fe(II) Complexes The synthesis and X-ray structure of 

[Fe2+(Ph2Tp)(tBuAPH)] (1a) were reported in our previous paper.[26] The 

analogous complex [1b]+ based on the neutral Ph2TIP ligand was 

generated by mixing [Fe2+(Ph2TIP)(OTf)2][28] and 2-amino-4,6-di-tert-

butylphenol (tBuAPH2) with one equivalent of triethylamine in CH2Cl2; 

recrystallization from toluene/pentane provided [1b]OTf as a yellow 

solid. Following counteranion metathesis with NaBPh4, X-ray quality 

crystals of [1b]BPh4 were obtained by layering a concentrated 1,2-

dichloroethane (DCE) solution with MeOH. The resulting structure 

(Figure 1) contains two symmetrically independent [1b]+ units with 

nearly identical geometries. Relevant structural parameters for 1a, 

[1b]BPh4, and 4a are provided in Table 1. Similar to 1a, complex 

[1b]+ features a 5C monoiron(II) center in a distorted trigonal-

bipyramidal coordination environment (τ = 0.60[29]). The amino and 

phenolate donors of the bidentate tBuAPH ligand are found in axial and 
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equatorial positions, respectively (Figure 1). The average Fe-NTIP bond 

distance of 2.19 Å in [1b]+ is ~0.04 Å longer than the average Fe-NTp 

distance in 1a, reflecting the weaker donating ability of neutral Ph2TIP 

relative to anionic Ph2Tp. In both 1a and [1b]+, the Fe-N/O bond 

lengths are indicative of high-spin Fe(II) centers, consistent with the 

presence of paramagnetically-shifted peaks in the corresponding 1H 

NMR spectra (Figure S1). 

 

Figure 1 Thermal ellipsoid plots (50% probability) derived from the X-ray 

structures of [1b]BPh4•1.5DCE (top) and 4a•4CH2Cl2 (bottom). Non-coordinating 

solvent molecules, counteranions, and most hydrogen atoms have been omitted for 

clarity. Key metric parameters are provided in Table 1. 
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Table 1 Selected Bond Distances (Å) and Bond Angles (deg) from the X-ray 

Structures of 1a•MeCN•0.5DCE, 1b[BPh4] • 1.5DCE, and 4a•4CH2Cl2. 

The Ph2Tp-based complex 4a contains the DMAP(1-) ligand – the 

N,N-dimethylated version of tBuAPH (Scheme 2). This complex is 

intended serve as a “control”, since methylation of the – NH2 group 

hinders conversion to the ISQ state. The overall structure of 4a, as 

revealed by X-ray crystallography (Figure 1), is quite similar to 1a. 

The most prominent difference is the 0.12 Å elongation of the Fe1-N7 

bond in 4a relative to 1a (Table 1), presumably due to steric repulsion 

between the −NMe2 group and 3-Ph substituents of the Ph2Tp ligand. 

Additionally, the plane of the DMAPH ligand is bent away from the O1-

Fe-N7 chelate ring by 26°, whereas the two planes are nearly colinear 

in 1a and [1b]+. 

1.B. Fe(II)-Iminobenzosemiquinonate Complexes Previously, we 

demonstrated that reaction of 1a with 2,4,6-tri-tert-butylphenoxy 

radical (TTBP•) provides the complex [Fe(Ph2Tp)(tBuISQ)] (2a) via H-
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atom transfer from the tBuAPH –NH2 donor to the organic radical.[26] In 

the X-ray structure of 2a, the tBuISQ ligand exhibits short O-C and N-C 

bond distances and a “four long/two short” distortion of the C-C bonds 

(Table S1) – well-known traits of the iminobenzosemiquinone oxidation 

state as elucidated by Wieghardt[15-17], Kaim,[14] and others.[19] Further 

spectroscopic evidence in support of this electronic-structure 

description is provided later in the manuscript. 

Treatment of [1b]OTf with TTBP• in CH2Cl2 produces a light 

green chromophore [2b]+ with an absorption spectrum similar to the 

one collected for 2a (Figure 2). In addition, the EPR spectra of [2b]+ 

and 2a are nearly identical; both exhibit a sharp peak at g ~ 6.5 and a 

broad derivative feature centered at g < 1.8 (Figure S2). Such spectra 

are characteristic of S = 3/2 systems with large, negative D-values 

and moderate rhombicities (E/D = 0.24 and 0.18 for 2a and [2b]+, 

respectively). Unfortunately, despite repeated attempts, it was not 

possible to obtain X-ray quality crystals of [2b]+. However, the strong 

resemblance between the spectroscopic (UV-vis/EPR) features of 2a 

and [2b]+ suggests similar Fe2+–ISQ electronic configurations – an 

assumption verified by analysis with Mössbauer spectroscopy (vide 

infra). 

 

Figure 2 UV-vis-NIR absorption spectra obtained in CH2Cl2 at room temperature. 
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1.C. Complexes [3a]SbF6 and [3b](OTf)2 Oxidation of 1a and 

[1b]OTf with two equivalents of AgX (X = SbF6 or OTf) in CH2Cl2 gives 

rise to complexes [3a]SbF6 and [3b](OTf)2, respectively, that each 

display a distinctive absorption band near 780 nm (12,800 cm−1; 

Figure 2). The magnetic moments of these complexes are near 5.0 μB 

– typical for S = 2 paramagnets – and the EPR spectrum of [3b]2+ 

exhibits a 4S signal at g = 8.7 (Figure S3). The structural data for 

[3a]SbF6 reported in our earlier study suffers from large uncertainties 

in bond distances (3σ ~ 0.035 Å in C-C distances), which hindered 

evaluation of the ligand oxidation state based on geometric 

parameters. As noted in the introduction, DFT calculations suggested 

an electronic structure intermediate between Fe3+–tBuISQ and Fe2+–
tBuIBQ.[26] 

Crystals of [3b](OTf)2 were obtained by layering a CH2Cl2 

solution with pentane; the resulting X-ray structure is shown in Figure 

3, and relevant metric parameters for [3a]SbF6 and [3b](OTf)2 are 

compared in Table 2. The σ-values for the [3b](OTf)2 bond distances 

are significantly smaller than those in the [3a]SbF6 structure. Like 

[3a]+, complex [3b]2+ features a distorted trigonal-bipyramidal 

coordination geometry (τ = 0.57) with O1 occupying an axial position. 

The O1-C1, N7-C2, and C-C bond distances of the O,N-donor ligand 

are fully consistent with ligand-based oxidation. Recently, Brown 

developed a helpful procedure for assessing the oxidation state of o-

amidophenolate ligands based on their metric parameters.[30] Using 

this method, the ligands in [3a]+ and [3b]2+ have estimated charges 

of −0.54(8) and −0.48(10) – approximately half-way between the 

ISQ1– and IBQ0 limits (Table 3). Further insights into the Fe and ligand 

oxidation state of [3a]+ and [3b]2+ are provided by spectroscopic and 

computational studies described below. 
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Figure 3 Thermal ellipsoid plot (50% probability) derived from the X-ray structure 

of [3b](OTf)2•CH2Cl2. Non-coordinating solvent molecules, counteranions, and most 

hydrogen atoms have been omitted for clarity. Key metric parameters are provided in 

Table 2. 

 

Table 2 Selected Bond Distances (Å) from the X-ray Structures of 

[3a]SbF6•0.5DCE and [3b](OTf)2•1.5CH2Cl2. 

http://dx.doi.org/10.1002/chem.201300520
http://epublications.marquette.edu/
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Table 3 Experimental and DFT-Computed Properties of Selected Complexes. 

1.D. Electrochemical Properties Our original intent in performing 

chemical oxidations of 1a and [1b]OTf was to generate the 

corresponding ferric complexes [Fe3+(Ph2Tp)(tBuAPH)]+ ([1aox]+) and 

[Fe3+(Ph2TIP)(tBuAPH)]2+ ([1box]2+). However, treatment of 1a and 

[1b]OTf with a single equivalent of one-electron oxidants (such as 

acetylferrocenium, [N(C6H4Br-4)3]+, or Ag+) instead produced 0.5 

equivalent of [3a]+ and [3b]2+, respectively. Indeed, titrations of 1a 

and [1b]OTf with acetylferrocenium revealed a linear increase in the 

intensity of the [3a]+/[3b]2+ absorption features up to two equivalents 

of oxidant, indicating that the Fe(II) precursors exclusively undergo 

two-electron oxidations. This situation generally occurs when the 

product of the initial one-electron transfer undergoes a chemical 

change to yield a species that is more reducing than the starting 

complex. 

To better understand this phenomenon, cyclic voltammetric 

studies of the Ph2Tp series were conducted in CH2Cl2 with 100 mM 

[NBu4]PF6 as the supporting electrolyte.[31] All redox potentials are 

referenced to the ferrocenium/ferrocene couple (Fc+/Fc). As shown in 

Figure 4, 1a undergoes an irreversible oxidation at −15 mV, followed 

http://dx.doi.org/10.1002/chem.201300520
http://epublications.marquette.edu/
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by a cathodic wave at −490 mV with half the current intensity of the 

anodic wave. We therefore concluded that the oxidation at −15 mV 

corresponds to the two-electron process 1a → [3a]+ + H+, while the 

subsequent reduction corresponds to one-electron reduction of [3a]+ 

to 2a. This conclusion was confirmed by the CV of 2a (Figure 4), which 

shows a quasi-reversible [3a]+/2a couple with E1/2 = −380 mV (ΔE = 

140 mV). Thus, 2a is indeed more reducing than 1a, accounting for 

the behavior described above. 

 

Figure 4 Cyclic voltammograms of 1a, 2a, and 4a. Data was collected in CH2Cl2 

with 100 mM (NBu4)PF6 as the supporting electrolyte. The scan rate was either 100 

mV/s (2a and 4a) or 200 mV (1a). 

http://dx.doi.org/10.1002/chem.201300520
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Scheme 3 summarizes the electrochemical properties of these 

complexes. One-electron oxidation of 1a presumably yields the ferric 

complex [1aox]+, although this transient species is never observed. 

Instead, [1aox]+ quickly sheds a proton to the surrounding medium to 

give 2a, since the change in Fe oxidation state dramatically lowers the 

pKa of the coordinated –NH2 donor. The fact that Ep,a([1aox]+/1a) > 

E1/2([3a]+/2a) ensures that 2a is not stable in this environment; 

instead, it disproportionates to give 0.5 equivalent each of 1a and 

[3a]+ (Scheme 3B). Thus, the only way to convert 1a into 2a is to 

employ an H-atom abstracting agent like TTBP• that is not an effective 

one-electron oxidant. Our results also indicate that deprotonation of 

the O,N-ligand dramatically lowers its redox potential, thus favoring 

ligand-based over metal-based oxidation. 

 

Scheme 3 

The electrochemical behavior of 4a is straightforward since the 

DMAPH ligand cannot easily participate in proton or electron transfers. 

This complex displays a quasi-reversible redox event with E1/2 = −15 

mV (ΔE = 130 mV) that corresponds to the Fe3+/Fe2+ couple (Figure 

4). The 4a potential can serve as an approximate value for the 

irreversible [1aox]+/1a couple. The free tBuAPH2 and DMAPH ligands are 

irreversibly oxidized at more positive potentials of +280 and +450 mV, 

respectively, in CH2Cl2 (Figure S4). 
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2. Spectroscopic and Computational Analysis of 

Electronic Structures 

2.A. Geometric and Electronic Structures of DFT-Optimized 

Models 

Since the spectroscopic data presented below are frequently 

interpreted with the assistance of DFT calculations, it is necessary to 

first describe the molecular and electronic structures of our 

computational models. We employed truncated versions of the 

complexes in which the tert-butyl groups of the O,N-donor were 

replaced with methyl groups and the phenyl substituents at the 5-

positions of the pyrazole (Ph2Tp) and imidazole (Ph2TIP) rings were 

removed. Unless otherwise noted, all calculations employed the B3LYP 

functional. As noted in our earlier study, the most stable geometry-

optimized structure of 2a was obtained using the broken symmetry 

(BS) methodology[32] and an overall spin of 3/2; this model provided 

metric parameters in excellent agreement with the crystallographic 

data (Table S1). The Mulliken spin populations, listed in Table 3, 

support the view that the electronic structure of 2a should be 

described as a high-spin Fe(II) center (3.77 α-spins) AF-coupled to an 

ISQ-based π-radical (0.86 β-spins). The exchange coupling constant 

(J) has a computed value of −223 cm−1, based on the Yamaguchi 

approach (H = −2JSA•SB).[33] The AF coupling is mediated by a 

nonorthogonal pair of singly-occupied molecular orbitals (SOMOs) with 

opposite spins, shown in the qualitative MO diagram in Figure 5. The 

relevant magnetic orbitals for 2a are the α-Fe(dxy)- and β-ISQ(π*)-

based MOs that display 33% spatial overlap – indicative of a ligand-

based radical with rather weak interactions with the Fe(II) center. The 

structure and bonding scheme of [2b]+, also computed with the BS 

approach, are nearly identical to the corresponding 2a model (Tables 3 

and S1), consistent with the spectral similarities between 2a and 

[2b]+ (vide supra). 

http://dx.doi.org/10.1002/chem.201300520
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Figure 5 Qualitative molecular orbital diagrams of 2a (left) and [3a]+ (right) 

obtained from broken-symmetry DFT calculations. Isosurface plots for important MOs 

are provided, along with the overlap (S) between corresponding magnetic orbitals. 

While the optimized [3a]+ geometry obtained with the B3LYP 

functional agrees reasonably well with the crystallographic data, the 

Fe-N/O and intraligand bond distances in the DFT-structure of [3b]2+ 

structure deviate significantly from the experimental values (Table 

S2). Better agreement was obtained with the BP functional for both 

[3a]+ and [3b]2+, and therefore our analysis of these complexes has 

employed the BP-derived structures. For each complex, DFT 

calculations converge to the same S = 2 state irrespective of whether 

the BS approach is employed. The Mulliken spin populations appear to 

favor an Fe2+–tBuIBQ description, as the Fe center carries 

approximately four unpaired spins and the ligand-based spin density is 

reduced relative to 2a/[2b]+ (Table 3). The β-HOMO of [3a]+ contains 

significant amounts of both Fe (39%) and O,N-ligand (53%) character 

(Figure 5), indicative of intermediate Fe2+/3+ and IBQ/ISQ oxidation 

states (the corresponding values for [3b]2+ are 53 and 37%). In 

addition, the spatial overlap between the pair of magnetic orbitals 

involved in the spin-coupling interaction is ~80%, which reflects a high 
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degree of spin pairing (as opposed to the “diradical” situation of 2a). 

However, these computational results should be viewed with caution, 

since the experimental metric parameters for [3a]+/[3b]2+ are not 

consistent with a pure IBQ description, as evident in the ligand 

charges shown in Table 3. Spectroscopic studies are therefore required 

to properly evaluate the electronic structures of [3a]+ and [3b]2+. 

Finally, we generated DFT models of the hypothetical Ga(III) 

complexes, [Ga3+(Ph2Tp)(ISQ)]+ (Ga-ISQ) and [Ga3+(Ph2Tp)(IBQ)]2+ 

(Ga-IBQ). The Ga(III) ion has been employed in previous 

computational studies as a closed-shell analog of Fe(III) due to 

similarities in charge and ionic radius.[34] Since Ga(III) is not redox 

active, the Ga-ISQ and Ga-IBQ models allow us to assess the 

electronic and spectroscopic properties of “pure” ISQ and IBQ ligands 

without complications from the paramagnetic Fe center. 

2.B. Mössbauer Spectroscopy 

Mössbauer (MB) spectroscopy has proven capable of providing 

definitive assessments of Fe oxidation states in complexes with non-

innocent ligands. Figure 6 displays low-temperature (6 K) MB spectra 

collected in an applied field of 0.04 T for polycrystalline samples of 1a, 

2a, and [3a]SbF6; the corresponding spectra of the Ph2TIP-based “b 

series” are provided in Figure S5. MB parameters summarized in 

Tables 3 and S3. Complex 1a displays a single doublet with an isomer 

shift (δ) of 1.06 mm/s and quadrupole splitting (ΔEQ) of 2.52 mm/s, 

consistent with the presence of a conventional high-spin Fe(II) 

center.[35] In contrast, the MB spectrum of [1b]OTf features two 

doublets in a ~2:1 ratio; the parameters for both species are typical of 

high-spin Fe(II) complexes: δ = 1.06 and 1.14 mm/s and ΔEQ = 2.08 

and 2.93 mm/s for the major and minor components, respectively. The 

two observed species likely correspond to conformational isomers of 

[1b]+ that lie at different points along the continuum between square-

pyramidal and trigonal-bipyramidal geometries. In support of this 

conclusion, the X-ray structure of [1b]+ (vide supra) features two 

independent complexes in the unit cell with distinct τ-values of 0.60 

and 0.55. 
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Figure 6 Mössbauer spectra of complexes 1a, 2a and [3a]SbF6 recorded at 6 K in 

an applied field of 0.04 T. The parameters indicated represent the principal species 

discussed in the text. The spectrum of sample 2a contains a contribution from 1a, 

amounting to 30% of the total Fe in the sample (inner doublet, indicated by the 

bracket). The spectrum of [3a]+ shown in this figure was obtained by subtracting 20 

% of impurities from the raw data. 

The MB spectrum of 2a exhibits a broad doublet with a large 

quadrupole splitting (δ = 0.97, ΔEQ = 3.5 mm/s), although the 

presence of starting material (~30% of Fe) is also evident (Figure 6). 

Significantly, the modest decrease of 0.09 mm/s in isomer shift upon 

conversion of 1a to 2a provides unequivocal evidence that the 

oxidation is ligand-based, in support of the Fe2+–ISQ formulation for 

2a. Likewise, the MB parameters of [2b]+ are consistent with the 

presence of a high-spin Fe(II) center. In this case, proper fitting of the 

MB spectrum required three doublets with δ-values of 0.97 ± 0.02 

mm/s and ΔEQ values between 1.7–2.5 mm/s (Table S3). Given the 

nearly identical isomer shifts, these three species likely correspond to 

conformational isomers of [2b]+, similar to the situation discussed 
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above for [1b]+. The heterogeneity observed in the [2b]+ spectrum is 

related to the inability to prepare suitable crystals of this complex, 

which necessitated the use of powder samples lacking the intrinsic 

order of crystalline material. The broadness of the doublets for both 2a 

and [2b]+ is likely due to spin-spin relaxation effects. 

MB spectra of [3a]+ and [3b]2+ each display a single doublet 

centered at δ = 0.73 and 0.64 mm/s, respectively, with quadrupole 

splittings of ~2.0 mm/s (Table 3; the [3b]2+ spectrum also contains 

features arising from ferrous impurities). The lower δ-values suggest 

that one-electron oxidation of 2a→[3a]+ (or [2b]+→[3b]2+) involves 

significant removal of electron density from the Fe ions. However, the 

observed isomers shifts are larger than one would expect for high-spin 

Fe(III) centers, which typically display values between 0.4 and 0.6 

mm/s.[35] A survey of high-spin [Fe3+(ISQ)n] complexes (n = 1, 2, or 

3) prepared by Wieghardt and coworkers found δ-values ranging from 

0.44 to 0.54 mm/s.[16-17] The MB data is therefore consistent with our 

DFT results that suggest partial IBQ character for the O,N-ligands in 

[3a]+/[3b]2+. It is also important to note that the a- and b-series of 

complexes yield very similar MB parameters, suggesting that the 

supporting ligand (Ph2Tp(1-) vs. Ph2TIP) has little effect on the Fe/LO,N 

unit. 

As shown in Table 3, isomer shifts derived from DFT calculations 

are quite consistent with the experimental data, although DFT 

generally underestimates δ-values by ~0.05-0.15 mm/s. In particular, 

DFT nicely reproduces the magnitude of changes (Δδ) across the 

1→2→3 series. The overall agreement is less satisfactory for 

quadrupole splittings, but it is well-known that DFT has more difficulty 

computing accurate ΔEQ values.[36] The general agreement between 

calculated and experimental MB parameters indicates that our 

computational models faithfully represent the electronic structures of 

these “redox-ambiguous” complexes. 

2.C. Electronic Absorption and MCD Spectroscopies 

The UV-vis-NIR spectra of 2a and [2b]+ displayed in Figure 2 

are characterized by a broad absorption manifold (ε ~ 1.0 mM−1cm−1) 

centered around 750 nm (13,300 cm−1). In this region, the 2a/[2b]+ 

spectra closely resemble those reported for other ISQ-containing 
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complexes with various metal ions (Co3+, Ni2+, and Cu2+),[37] as well as 

the spectrum measured by Carter et al. for a “free” ISQ radical.[38] 

These spectral similarities suggest that the transitions observed for 2a 

and [2b]+ are primarily ligand-based. This conclusion is also supported 

our time-dependent DFT (TD-DFT) calculations. The dominant 

contributor to the 750 nm feature is an intraligand transition in which 

the acceptor orbital is the SOMO of the tBuISQ radical. TD-DFT 

calculations predict this transition to appear at 16,100 and 15,200 

cm−1 for 2a and [2b]+, respectively (Table S4). In general, the TD-

DFT methodology nicely replicates the energies and intensities of the 

experimental absorption features, as shown in Figure 7 for 2a 

(electron density difference maps – EDDMs – for key transitions are 

provided in Figure S6). These calculations indicate that another 

component of the absorption manifold involves excitation to the tBuISQ 

SOMO from an MO with mixed tBuISQ/Fe(II) character; the computed 

energy for this transition is 15,000 cm−1 for 2a. The weak near-

infrared (NIR) bands evident for both complexes likely arise from 

Fe(II) d-d transitions, while features at higher energies (> 20,000 

cm−1) are attributed by TD-DFT to tBuISQ→Fe(II) charge transfer (CT). 

These latter bands are relatively weak due to poor overlap between 

the tBuISQ SOMO and half-occupied Fe(II) orbitals (Figure 5). 
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Figure 7 Experimental (dashed line) and TD-DFT computed (solid line) absorption 

spectra for 2a (top) and [3a]+ (bottom). The arrows point to features in the computed 

spectra arising from the indicated type of electronic transition. 

Analysis of the [3a]/[3b]2+ spectra is more complex due to the 

large extent of mixing between Fe and ligand orbitals. For both 

complexes, the β-HOMO – containing approximately equal parts metal 

and ligand character (vide supra) – arises from a π-bonding interaction 

between the parent Fe 3d and LO,N orbitals (Figure 5). TD-DFT 

calculations, which again faithfully reproduce key features of the 

experimental spectrum (Figure 7 and Table S4), indicate that the 

intense absorption feature at ~13,000 cm−1 involves electron transfer 

from the β-HOMO to its unoccupied π-antibonding counterpart; 

therefore, this excitation is best described as a π→π* transition 

centered on the O1-Fe1-N7 unit. The broad band evident in the NIR 

region (ε ~ 1.0 mM−1cm−1) is then attributed to β-HOMO→Fe 3d 

transitions where the acceptor orbitals lack significant LO,N character. 

Given the mixed nature of the β-HOMO, this low-energy feature 

possesses both Fe d-d and LMCT character, as revealed in the EDDMs 

in Figure S7. Interestingly, the intraligand transition that is prominent 

at ~13,300 cm−1 in the 2a/[2b]+ spectra is calculated to appear at 

18,900 cm−1 for [3a]+, although this transition now contains some 

LMCT character. The blue-shift reflects the partial IBQ character of the 

O,N-coordinated ligands, since previous reports have demonstrated 

that the lowest-energy IBQ-based transition in metal complexes occurs 

near 20,800 cm−1.[37] This intraligand transition is largely obscured in 

the [3a]+ spectrum by intense NTp→Fe CT transitions. However, 

because the Ph2TIP-based MOs are greatly stabilized relative to their 
Ph2Tp counterparts (on account of the difference in charge), the 

NTIP→Fe CT transitions are found at relatively high energies. 

Intraligand transitions are therefore evident in the 20,000-25000 cm−1 

region of the [3b]2+ spectrum with intensities of ~1.5 mM−1cm−1. 

The electronic transitions of [3b](OTf)2 were further probed 

through the collection of solid-state MCD spectra at low temperatures 

(4-30 K). All bands in the visible region exhibit temperature-dependent 

intensity characteristic of C-term behavior (Figure 7, top), as expected 

for a paramagnetic S = 2 species. Based on our analysis of the 

absorption spectrum, the most intense MCD feature at 12,500 cm−1 

corresponds to the Fe/LO,N π→π* transition, while the bands centered 
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around 20,000 cm−1 are ascribed primarily to intraligand transitions. 

Since MCD C-term intensity requires spin-orbit coupling between 

states, features that involve metal d-orbitals, such as ligand-field (d-d) 

and CT transitions, are relatively more intense in MCD than absorption 

spectra (C/D ratio).[39] Thus, the comparative weakness of the higher-

energy features in the [3b]2+ MCD spectrum is further confirmation of 

the ligand-based nature of these transitions. 

Variable-temperature variable-field MCD (VTVH-MCD) data were 

collected at 790 nm (12660 cm−1) for [3b]2+. In these experiments, 

MCD intensity was monitored at five temperatures (2, 4, 8, 15, and 30 

K) as the magnetic field (H) was varied from 0 to 7 T; by convention, 

the resulting magnetization curves are plotted against βH/2kT (Figure 

8, bottom). As demonstrated by Solomon and Neese, quantitative 

analysis of the VTVH-MCD curves provides valuable information 

regarding spin-Hamiltonian parameters and transition polarizations.[40] 

The VTVH-MCD method is particularly powerful for non-Kramers 

systems, such as [3b]2+, that are often inaccessible by EPR. The 

magnetization curves obtained at 790 nm saturate rapidly with field 

and exhibit very little “nesting” (i.e., spread between curves obtained 

at different temperatures). Such behavior is characteristic of S = 2 

systems with negative zero-field-splitting (ZFS).[41] Indeed, the best fit 

of the 790 nm data was obtained with D = –5.0 cm−1 and E/D = 0.20 

(Figure 8), although a broad range of negative D-values (< 4 cm−1) 

with moderate rhombicities (0.1 < E/D < 0.25) provided acceptable 

fits. Our analysis indicates that the corresponding transition is 

polarized in the xz-direction, which requires the O,N-donor ligand to lie 

in the xz-plane of the D-tensor (Figure 5). 
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Figure 8 Top: Variable-temperature solid-state MCD spectra of [3b](OTf)2. Spectra 

were measured at a magnetic field of 7 T and at temperatures of 4, 8, 15, and 30 K. 

Bottom: VTVH-MCD data collected at 790 nm for [3b](OTf)2. Data were obtained at 

the indicated temperatures with magnetic fields (H) ranging from 0 to 7 T. The best fit 

(⨀) was obtained with the following spin Hamiltonian parameters: S = 2, D = −5 

cm−1, E/D = 0.20, giso = 2.0. 

2.D. Resonance Raman Spectroscopies 

Vibrational spectroscopy has proven valuable in the 

characterization of metal-bond phenoxyl and semiquinone radicals.[42] 

In the case of dioxolene complexes, the C–O stretching frequency is a 

sensitive indicator of ligand oxidation state, ranging from 1400-1500 

cm−1 for semiquinones and 1620-1640 cm−1 for benzoquinones.[43] By 

contrast, the vibrational features of iminobenzo(semi)quinones have 

not been examined in detail. We therefore collected resonance Raman 

spectra on frozen samples of [3a]SbF6 in CD2Cl2 (Figure 9). The 

experiments utilized 488 nm laser excitation, in resonance with the 
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intraligand transitions that appear in this region (vide supra). To aid in 

peak assignments, we prepared a sample of [3a]+ in which the O,N-

ligand was labeled with the 15N isotope; the difference spectrum 

revealed several peaks that are sensitive to 15N substitution (Figure 9). 

Interpretation of the rRaman data was further aided by DFT frequency 

calculations employing the BP functional. 

 

Figure 9 Resonance Raman spectra obtained with 488.0 nm excitation (45 mW) of 

frozen CD2Cl2 solutions of (top) natural abundance [3a]SbF6, and (middle) [3a]SbF6 

with incorporation of 15N isotope in the LO,N ligand. The difference spectrum is shown 

on the bottom. Frequencies (in cm−1) are provided for selected peaks, with the 

corresponding 14N→15N shifts shown in parenthesis. Peaks marked with an asterisk (*) 

arise from the frozen solvent, while the peak marked with a triangle arises from 

condensed liquid O2. 

Based on literature precedents involving metal-semiquinone 

complexes,[42c, 42d] the two isotopically-sensitive peaks at 520 and 577 

cm−1 in the [3a]+ spectrum are attributed to motions of the five-
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membered chelate ring formed by the Fe center and O,N-ligand. In 

support of this assignment, DFT predicts two modes at 532 and 588 

cm−1 (with 15N isotope shifts of 7 and 4 cm−1, respectively) with large 

degrees of chelate stretching character. The mode at 520 cm−1 

(calculated at 532 cm−1) is best described as a chelate breathing 

mode, whereas the chelate vibrations in the higher-energy mode are 

strongly mixed with intraligand C-C bond movements. Graphical 

depictions of these normal modes, along with further information 

concerning the computed vibrational spectrum, are provided in Figure 

S8. 

The [3a]+ spectrum exhibits numerous peaks in the 1100-1650 

cm−1 region. These features are not present in the rR spectrum of 1a 

(Figure S9); we therefore conclude that they arise from the oxidized 

O,N-ligand (an exception is the 1609 cm−1 peak, which appears in both 

spectra). Studies of analogous semiquinone complexes[42c, 42d] found 

that the most intense peaks in this region correspond to modes that 

couple O-C stretching and C-C ring motions. Indeed, DFT predicts two 

ν(O-C)-based modes for [3a]+ at 1342 and 1404 cm−1 that are slightly 

sensitive to 15N-substitution (calculated shifts of ~1 cm−1). These 

modes likely corresponding to the prominent peaks at 1308 and 1383 

cm−1 in the experimental spectrum. Modes with significant ν(N-C) 

character have computed frequencies of 1319, 1384, and 1495 cm−1, 

with 15N isotope shifts of ~1-3 cm−1 in each case. The two lower-

energy modes nicely match the experimental peaks at 1279 and 1373 

cm−1, respectively, while the higher-energy mode is not observed. 

Vibrational frequency calculations were also performed for the 

Ga-ISQ and Ga-IBQ models, which possess O,N-ligands with 

unambiguous oxidation states (vide supra). DFT predicts two ν(O-C) 

modes at 1319 and 1424 cm−1 for Ga-ISQ, while the corresponding 

modes for Ga-IBQ possess much higher frequencies of 1540 and 1584 

cm−1. Since the putative ν(O-C) modes of [3a]+ have experimental 

energies of 1308 and 1383 cm−1, the rRaman data appear to support 

an ISQ assignment for the ligand oxidation state. 
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Discussion 

A variety of spectroscopic and computational methods have 

been employed to evaluate the electronic structures of mononuclear Fe 

complexes bound to redox-active ligands derived from 2-amino-4,6-di-

tert-butylphenol (tBuAPH2). Our studies included the Ph2Tp-supported 

complexes 2a and [3a]SbF6 (previously reported), as well as a parallel 

“b-series” of complexes prepared with the neutral Ph2TIP supporting 

ligand (Scheme 2). The results described here strongly support our 

earlier conclusion – made on the basis of XRD and EPR data – that 2a 

contains a high-spin Fe(II) center antiferromagnetically coupled to an 

ISQtBu ligand radical (overall spin of 3/2). Specifically, the presence of 

a ferrous ion in 2a was verified by MB spectroscopy (δ = 0.97), and 

the unique absorption features were shown to arise from tBuISQ ligand-

based transitions. Although we were not able to obtain a crystal 

structure of [2b]+, similarities between the spectral properties of 2a 

and [2b]+ indicate that the complexes share identical electronic 

configurations. Analysis of the more-oxidized [3a]+ and [3b]2+ species 

is less straightforward, since a preponderance of the data indicate that 

actual electronic structures lie between the Fe3+–ISQ and Fe2+–IBQ 

limits. For instance, the O,N-ligand in the [3b]2+ crystal structure 

exhibits a more pronounced quinoid distortion than expected for a 

typical ISQ ligand, and the isomer shifts measured for [3a]+ and 

[3b]2+ (δave ~ 0.68) are considerably outside the range expected for 

high-spin ferric ions. However, the ν(C-O) frequencies observed by 

rRaman spectroscopy are more consistent with an ISQ oxidation state. 

The unprecedented example of an Fe(II) center bound to an ISQ 

radical in complexes 2a and [2b]+ is made possible by the 

combination of high-spin states and trigonal-bipyramidal 5C 

geometries, which result in Fe centers with enhanced electron 

affinities. Concerning the role of spin state, our DFT calculations 

indicate that isomers of 2a with intermediate- or low-spin centers 

converge to the alternate Fe3+–amidophenolate(2-) configuration. And 

the importance of coordination number is highlighted by comparison to 

the six-coordinate (6C) [(LN4)Fe3+(ISQ)]2+ complexes prepared by 

Wieghardt (where LN4 = cis-cyclam or tren).[16] These complexes 

undergo only ligand-based reductions to give the corresponding Fe(III) 

species with closed-shell amidophenolate(2-) ligands, even when the 

Fe center is high-spin.[44] These insights have implications for the 
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Fe/O2/substrate intermediate in the catalytic cycle of APDOs. Like 

2a/[2b]+, this species contains a high-spin center, yet it also has a 6C 

geometry due to the presence of the O2 ligand. Thus, extrapolation 

from the synthetic models would seem to favor the closed-shell 

electronic structure of intermediate I in Scheme 1. However, unlike 

Wieghardt's [(LN4)Fe3+(ISQ)]2+ models, the sixth ligand in the 

enzymatic intermediate (i.e., superoxide) is redox-active and electron-

withdrawing, and therefore capable of facilitating electron-transfer 

from the substrate ligand to the Fe center. We are currently examining 

the reactivity of our Fe2+–APH and Fe2+–ISQ complexes with O2 and 

NO to assess the impact of small molecule binding on the electronic 

configuration of the Fe/LO,N unit. 

Finally, it is worthwhile to consider why complexes like 2a/[2b]+ 

are viable whereas the corresponding Fe(II)–SQ complexes have not 

been reported despite extensive efforts in modeling catechol 

dioxygenases. Indeed, a catecholate analogue of 2a has already been 

reported and crystallographically characterized by Moro-oka, namely, 

[Fe2+(tBu,iPrTp)(DBC)] (5; where DBC = dianion of 3,5-di-tert-

butylcatechol).[45] Like 2a, complex 5 contains a trigonal bipyramidal 

Fe/Tp unit bound to a bidentate “substrate” ligand; however, the 

catecholate lacks quinoid distortion (C-O bond distances of 1.35 and 

1.38 Å), and the collective metric and spectroscopic data demand an 

Fe(III)-catecholate description. The divergent electronic structures of 

2a and 5 point to the intrinsic difference in redox potentials between 

catecholate and amidophenolate dianions. This difference may have 

mechanistic implications for the ring-cleaving dioxygenases. Normally, 

it is assumed that ECDOs and APDOs share a common catalytic 

mechanism; however, our synthetic experience indicates that a 

species like intermediate II in Scheme 1 is more feasible for APDOs 

than ECDOs. Thus, the two catalytic cycles may differ at this point, 

with the ECDOs adopting an intermediate I structure (as proposed by 

Ye and Neese[25]) and the APDOs adopting an intermediate II structure 

with considerable radical character on the substrate. 
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Experimental Section 

Materials and physical methods 

All reagents and solvents were purchased from commercial 

sources and used as received, unless otherwise noted. Acetonitrile, 

dichloromethane, and tetrahydrofuran were purified and dried using a 

Vacuum Atmospheres solvent purification system. The synthesis and 

handling of air-sensitive materials were performed under inert 

atmosphere using a Vacuum Atmospheres Omni-Lab glovebox. The 

ligands K(Ph2Tp),[46] Ph2TIP,[28] and tBuAPH2
[47] were prepared according 

to literature procedures. 15N-labeled tBuAPH2 was prepared using 
15NH4OH purchased from Cambridge Isotopes. Elemental analyses 

were performed at Midwest Microlab, LLC in Indianapolis, IN. 

Samples of [2b]OTf for spectroscopic studies were prepared by 

treating [1b]OTf with one equivalent of TTBP•[48] in CH2Cl2. After 

stirring for two hours, the green solution was filtered and the solvent 

removed under vacuum. The resulting powder exhibited the following 

peaks in the IR spectrum: 3342 [ν(N-H)], 3054, 1439, 1259,         

1222 cm-1.  

Spectroscopic Methods UV-vis absorption spectra were obtained with 

an Agilent 8453 diode array spectrometer; NIR absorption spectra 

were measured using an Agilent Cary 5000 spectrophotometer. 

Fourier-transform infrared (FTIR) spectra of solid samples were 

measured with a Thermo Scientific Nicolet iS5 FTIR spectrometer 

equipped with the iD3 attenuated total reflectance accessory. EPR 

experiments were performed using a Bruker ELEXSYS E600 equipped 

with an ER4415DM cavity resonating at 9.63 GHz, an Oxford 

Instruments ITC503 temperature controller, and an ESR-900 He flow 

cryostat. MCD spectra were obtained using a Jasco J-715 

spectropolarimeter in conjunction with an Oxford Instruments SM-

4000 8T magnetocryostat. Solid-state samples of [3a]SbF6 were 

prepared as uniform mulls in fluorolube. All MCD spectra were 

obtained by subtracting the -7 T spectrum from the +7 T spectrum to 

eliminate potential artifacts. Resonance Raman spectra were measured 

using 488.0 nm excitation from a Spectra Physics Ar+ laser (model 

2025-05), with 45 mW at the sample point in a 180° backscattering 

geometry. The sample was placed in a transparent quartz Dewar cell 
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filled with liquid nitrogen and spun at 800 rpm. Spectra were collected 

with the Spec-10 system (Princeton Instruments) installed on the 1269 

spectrograph (SPEX Industries) equipped with a standard 1200 

grove/inch grating at 80 mm slit width. Spectra were calibrated with 

fenchone and indene standards. Low-field (0.04 T) variable 

temperature (5 K – 200 K) Mössbauer spectra were recorded on a 

closed-cycle refrigerator spectrometer, model CCR4K, equipped with a 

0.04 T permanent magnet, maintaining temperatures between 5 and 

300 K. Mössbauer spectra were analyzed using the software WMOSS 

(Thomas Kent, SeeCo.us, Edina, Minnesota). The samples were 

polycrystalline powders, suspended in nujol, placed in Delrin 1.00 mL 

cups and frozen in liquid nitrogen. The isomer shifts are quoted at 6 K 

with respect to iron metal spectra recorded at 298 K. 

Electrochemical measurements Cyclic voltammetric (CV) 

measurements were conducted in the glovebox with an epsilon EC 

potentiostat (iBAS) at a scan rate of 100 mV/s with 100 mM 

(NBu4)PF6. A three-electrode cell containing a Ag/AgCl reference 

electrode, a platinum auxiliary electrode, and a glassy carbon working 

electrode was employed. Under these conditions, the 

ferrocene/ferrocenium (Fc+/0) couple has an E1/2 value of +0.52 V in 

CH2Cl2. 

Synthesis of Fe complexes 

 Synthetic procedures for complexes 1a, 2a, and [3a]SbF6 were 

previously published in Bittner et al.[26] 

[(Ph2TIP)Fe2+(tBuAPH)]X ([1b]X; X = OTf, BPh4): 

[(Ph2TIP)Fe2+(CH3CN)3](OTf)2
[22] (1.12 g, 0.927 mmol) and tBuAPH2 

(205.1 mg, 0.927 mmol) were mixed in CH2Cl2 (10 mL), followed by 

addition of triethylamine (142 μL, 1.02 mmol). After stirring overnight, 

the reaction was filtered and the solvent removed under vacuum. The 

brown solid was taken up in toluene and the product precipitated with 

excess pentane. The yellow solid was collected, washed again with 

pentane, and then dried to yield [1b]OTf as a bright yellow powder 

(yield = 921 mg, 86%). IR (solid): ṽ = 3348, 3059, 2949, 2901, 2861, 

1064, 1462, 1442, 1273, 1255, 1152, 1030 cm−1. Counteranion 

metathesis was performed by mixing [1b]OTf (125 mg, 0.108 mmol) 

with NaBPh4 (37.6 mg, 0.110 mmol) in MeOH (3 mL). After stirring for 
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15 minutes, a yellow precipitate formed that was collected and dried 

under vacuum. X-ray quality crystals of [1b]BPh4 were obtained by 

layering a concentrated 1,2-dichloroethane (DCE) solution with MeOH 

(yield = 83.1 mg, 48%). IR (solid): 3340, 3050, 2948, 2863, 1578, 

1478, 1443, 1379, 1305, 1264, 1142, 1074, 1023 cm−1. UV/Vis 

(CH2Cl2): λmax (ε) = 815 (10), 399 (1160 M−1cm−1). The X-ray 

structure revealed three uncoordinated DCE molecules in the 

asymmetric unit, and elemental analysis suggests that a small amount 

of solvent (~0.3 equiv./Fe) remains after drying. Elemental analysis 

calcd (%) for C86H81BFeN7OP•0.3DCE: C 76.70, H 6.11, N 7.23; found: 

C 76.70, H 6.13, N 7.13. 

[(Ph2TIP)Fe3+(tBuISQ)](OTf)2 ([3b]OTf2): Complex [1b]OTf (184 

mg, 0.159 mmol) and two equiv. of AgOTf (83 mg, 0.32 mmol) were 

stirred in THF (6 mL) for one hour, yielding a dark green solution. The 

solution was filtered through celite and the solvent removed under 

vacuum. The resulting solid was taken up in CH2Cl2 (or 1,2-

dichloroethane) and layered with n-hexane, providing dark green 

needles suitable for XRD experiments (yield = 208 mg, 94%). IR 

(solid): 3270, 3058, 2959, 1603, 1578, 1469, 1445, 1364, 1257, 

1221, 1147, 1073, 1026 cm−1. UV/Vis (CH2Cl2): λmax (ε) = 798 nm 

(2800 M−1cm−1). Elemental analysis calcd (%) for C64H60F6FeN7O7PS2: 

C 58.94, H 4.64, N 7.52; found: C 54.88, H 4.84, N 6.79. The 

disagreement indicates that small amounts of impurities and/or 

solvent are present. 

[(Ph2Tp)Fe2+(DMAPH)] (4a): 2-(dimethylamino)-4,6-di-tert-

butylphenol (DMAPH) was prepared according to the previously 

published procedure.[49] Fe(OTf)2 (248 mg, 0.701 mmol), K(Ph2Tp) (497 

mg, 0.701 mmol), and DMAPH (175 mg, 0.701 mmol) were mixed in a 

2:1 solution of CH2Cl2:MeCN (15 mL), followed by addition of 

triethylamine (108 μL, 0.774 mmol). After stirring for several hours, 

the solvent was removed. The resulting solid was taken up in CH2Cl2 (6 

mL) and filtered. Storage of this solution in a freezer (−30 °C) for 

several days provided bright yellow crystals suitable for X-ray 

crystallographic analysis (yield = 160 mg, 24%). IR (solid): 3056, 

2948, 2855, 2637, 1545, 1462, 1412, 1356, 1302, 1264, 1246, 1167, 

1060, 1028, 1007 cm−1. UV/Vis (CH2Cl2): λmax (ε) = 365 nm (1950 

M−1cm−1). Elemental analysis calcd (%) for C61H60BFeN7O: C, 75.23; H, 

6.21; N, 10.07; found: C, 74.97; H, 6.18; N, 10.07. 
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Crystallographic studies 

X-ray diffraction (XRD) data were collected with an Oxford 

Diffraction SuperNova kappa-diffractometer (Agilent Technologies) 

equipped with dual microfocus Cu/Mo X-ray sources, X-ray mirror 

optics, Atlas CCD detector, and low-temperature Cryojet device. The 

data were processed with CrysAlis Pro program package (Agilent 

Technologies, 2011) typically using a numerical Gaussian absorption 

correction (based on the real shape of the crystal), followed by an 

empirical multi-scan correction using SCALE3 ABSPACK routine. The 

structures were solved using SHELXS program and refined with 

SHELXL program[50] within Olex2 crystallographic package.[51] B- and 

C-bonded hydrogen atoms were positioned geometrically and refined 

using appropriate geometric restrictions on the corresponding bond 

lengths and bond angles within a riding/rotating model (torsion angles 

of methyl hydrogens were optimized to better fit the residual electron 

density). 

Crystal data for [1b](BPh4)·1.5 DCE: Formula= 

C89H87BCl3FeN7OP; Mw= 1474.68; triclinic; space group P−1; a= 

17.3220(4), b= 20.6267(4), c= 22.0768(4) Å; α= 81.955(2), β= 

78.343(2), γ= 87.958(2)°; V= 7649.0(3) Å3; T = 100 K; Z= 4; 

101066 reflections measured; 37578 unique reflections (Rint = 0.0357) 

; final R indices [I>2σ(I)] R1= 0.0552 and wR2= 0.1469; R indices (all 

data) R1=0.0708 and wR2=0.1608. 

Crystal data for [3b](OTf)2·CH2Cl2: Formula= 

C65H62Cl2F6FeN7O7PS2; Mw = 1389.08; monoclinic; space group P21/c; 

a= 20.0160(13), b= 15.3008(11), c= 22.2057(18) Å; α= 90, β= 

94.320(8), γ= 90°; V= 6781.4(9) Å3; T= 100 K; Z= 4; 35453 

reflections measured; 13347 unique reflections (Rint = 0.0787); final R 

indices [I>2σ(I)] R1=0.0723 and wR2=0.1786; R indices (all data) 

R1=0.1153 and wR2=0.2105. 

Crystal data for [4a]·4CH2Cl2: Formula= C65H68BCl8FeN7; Mw= 

1313.56; monoclinic; space group P21/c; a= 17.1045(5), b= 

14.4938(5), c= 26.5165(8) Å; α= 90, β= 100.482(3), γ= 90°; 

V=6464.0(3) Å3; T = 100 K; Z= 4; 41153 reflections measured; 

12682 unique reflections (Rint= 0.0356); final R indices [I>2σ(I)] 
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R1=0.0606 and wR2=0.1488; R indices (all data) R1=0.0764 and 

wR2=0.1588. 

DFT calculations 

DFT calculations were performed using the ORCA 2.8 software 

package developed by Dr. F. Neese.[52] Geometry optimizations 

employed either the Becke-Perdew (BP86) functional[53] or Becke's 

three-parameter hybrid functional for exchange along with the Lee-

Yang-Parr correlation functional (B3LYP).[54] Ahlrichs’ valence triple-ζ 

basis set (TZV), in conjunction with the TZV/J auxiliary basis set,[55] 

were used for all calculations. Time-dependent DFT (TD-DFT) 

calculations[56] computed absorption energies and intensities within the 

Tamm-Dancoff approximation.[57] In each case, at least 60 excited 

states were calculated. Vibrational frequency calculations were 

performed with a truncated [3a]+ model with hydrogen atoms at the 

3- and 5-positions of the Tp ligand. Calculation of the harmonic force 

fields proved that the optimized structure is a local minima on the 

potential energy surface. MB parameters were calculated using the 

approach described in Römelt et al.[58]; in these calculations, the size 

of the integration grid for Fe, O, and N atoms was increased. The 

gOpenMol program[59] developed by Laaksonen was used to generate 

isosurface plots of molecular orbitals. 
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