10,371 research outputs found

    Neutralino reconstruction in supersymmetry with long-lived staus

    Full text link
    We consider a supergravity (SUGRA) scenario, with universal scalar and gaugino masses at high scale, with a right-chiral neutrino superfield included in the spectrum. Such a scenario can have a lightest supersymmetric particle (LSP) dominated by the right sneutrino and a stau as the next-to lightest supersymmetric particle (NLSP). Since decays of all particles into the LSP are suppressed by the neutrino Yukawa coupling, the signal of supersymmetry consists in charged tracks of stable particles in the muon chamber. We demonstrate how a neutralino decaying into a tau and the stau-NLSP can be fully reconstructed over substantial areas in the SUGRA parameter space. We also suggest event selection criteria for eliminating backgrounds, including combinatorial ones, and use a new method for the extraction of the mass of the stau-NLSP, using its three-momentum as obtained from the curvature of the charged track.Comment: Version to appear in Phys. Rev.

    The CWKB Method of Particle Production in Periodic Potential

    Full text link
    In this work we study the particle production in time dependent periodic potential using the method of complex time WKB (CWKB) approximation. In the inflationary cosmology at the end of inflationary stage, the potential becomes time dependent as well as periodic. Reheating occurs due to particle production by the oscillating inflaton field. Using CWKB we obtain almost identical results on catastrophic particle production as obtained by others.Comment: 17 pages, latex, 2 figure

    Gravitational deflection of light in the Schwarzschild -de Sitter space time

    Full text link
    Recent studies suggest that the cosmological constant affects the gravitational bending of photons although the orbital equation for light in Schwarzschild-de Sitter space time is free from cosmological constant. Here we argued that the very notion of cosmological constant independency of photon orbit in the Schwarzschild-de Sitter space time is not proper. Consequently the cosmological constant has some clear contribution to the deflection angle of light rays. We stressed the importance of the study of photon trajectories from the reference objects in bending calculation, particularly for asymptotically non-flat space-time. When such an aspect is taken in to consideration the contribution of cosmological constant to the effective bending is found to depend on the distances of the source and the reference objects.Comment: 5 pages, no figur

    The effect of substrate induced strain on the charge-ordering transition in Nd_{0.5}Sr_{0.5}MnO_{3} thin films

    Full text link
    We report the synthesis and characterization of Nd_{0.5}Sr_{0.5}MnO_{3} thin films grown by the Pulsed Laser Deposition technique on 100 -oriented LaAlO_{3} substrates. X-ray diffraction (XRD) studies show that the films are 101 -oriented, with a strained and quasi-relaxed component, the latter increasing with film thickness. We observe that transport properties are strongly dependent on the thickness of the films. Variable temperature XRD down to 100 K suggests that this is caused by substrate induced strain on the films.Comment: 3 pages REVTeX, 4 figures included, submitted to AP

    Periodic Orbits and Spectral Statistics of Pseudointegrable Billiards

    Full text link
    We demonstrate for a generic pseudointegrable billiard that the number of periodic orbit families with length less than ll increases as πb0l2/⟨a(l)⟩\pi b_0l^2/\langle a(l) \rangle, where b0b_0 is a constant and ⟨a(l)⟩\langle a(l) \rangle is the average area occupied by these families. We also find that ⟨a(l)⟩\langle a(l) \rangle increases with ll before saturating. Finally, we show that periodic orbits provide a good estimate of spectral correlations in the corresponding quantum spectrum and thus conclude that diffraction effects are not as significant in such studies.Comment: 13 pages in RevTex including 5 figure

    Periodic Orbits in Polygonal Billiards

    Full text link
    We review some properties of periodic orbit families in polygonal billiards and discuss in particular a sum rule that they obey. In addition, we provide algorithms to determine periodic orbit families and present numerical results that shed new light on the proliferation law and its variation with the genus of the invariant surface. Finally, we deal with correlations in the length spectrum and find that long orbits display Poisson fluctuations.Comment: 30 pages (Latex) including 11 figure

    Tunneling magnetoresistance in (La,Pr,Ca)MnO3 nanobridges

    Full text link
    The manganite (La,Pr,Ca)MnO3 is well known for its micrometer scale phase separation into coexisting ferromagnetic metallic and antiferromagnetic insulating (AFI) regions. Fabricating bridges with widths smaller than the phase separation length scale has allowed us to probe the magnetic properties of individual phase separated regions. We observe tunneling magnetoresistance across naturally occurring AFI tunnel barriers separating adjacent ferromagnetic regions spanning the width of the bridges. Further, near the Curie temperature, a magnetic field induced metal-to-insulator transition among a discrete number of regions within the narrow bridges gives rise to abrupt and colossal low-field magnetoresistance steps at well defined switching fields.Comment: 13 pages, 3 figures, submitted to Applied Physics Letter

    Current Acceleration from Dilaton and Stringy Cold Dark Matter

    Get PDF
    We argue that string theory has all the ingredients to provide us with candidates for the cold dark matter and explain the current acceleration of our Universe. In any generic string compactification the dilaton plays an important role as it couples to the Standard Model and other heavy non-relativistic degrees of freedom such as the string winding modes and wrapped branes, we collectively call them stringy cold dark matter. These couplings are non-universal which results in an interesting dynamics for a rolling dilaton. Initially, its potential can track radiation and matter while beginning to dominate the dynamics recently, triggering a phase of acceleration. This scenario can be realized as long as the dilaton also couples strongly to some heavy modes. We furnish examples of such modes. We provide analytical and numerical results and compare them with the current supernovae result. This favors certain stringy candidates.Comment: 16 pages, 4 figures (colour

    Efficient tight-binding Monte Carlo structural sampling of complex materials

    Full text link
    While recent work towards the development of tight-binding and ab-initio algorithms has focused on molecular dynamics, Monte Carlo methods can often lead to better results with relatively little effort. We present here a multi-step Monte Carlo algorithm that makes use of the possibility of quickly evaluating local energies. For the thermalization of a 1000-atom configuration of {\it a}-Si, this algorithm gains about an order of magnitude in speed over standard molecular dynamics. The algorithm can easily be ported to a wide range of materials and can be dynamically optimized for a maximum efficiency.Comment: 5 pages including 3 postscript figure
    • …
    corecore