112 research outputs found

    A clinically validated Drosophila S2 based vaccine platform for production of malaria vaccines

    Get PDF
    Drosophila S2 insect cell expression is less known than the extensively used Spodoptera or Trichoplusia ni (Hi-5) insect cell based Baculovirus expression system (BEVS). Nevertheless it has been used in research for almost 40 years. The cell line was derived from late stage Drosophila melanogaster (Fruit fly) embryos by Schneider in the 1970s, who named the cell line Drosophila Schneider line 2 (synonyms: S2, SL2, D.mel. 2). The system has been widely applied to fundamental research, where the availability of the whole genome sequence of Drosophila melanogaster (1, 2) and the S2 cells’ susceptibility to RNA interference methods (3, 4) have enabled genome wide RNAi screening and whole genome expression analysis techniques to be used to great effect. S2 cells have proved to be highly effective for the production of proteins from a great variety of protein classes (5), such as: viral proteins, toxins, membrane proteins, enzyme, etc. Recent publications have also shown the strength of the S2 system in expression of Virus Like Particles (VLPs) (6). ExpreS2ion has developed the ExpreS2, Drosophila S2 platform to achieve improved yields for difficult to express proteins. Furthermore, several technologies have been developed to improve the ease of use of the system, as well as enable fast and efficient screening of multiple constructs. S2 based production processes for two malaria vaccine clinical trails with The Jenner Institute, Oxford University (Rh5 (7,8), blood-stage malaria) and Copenhagen University (VAR2CSA (9) pregnancy associated malaria) have been developed. The placental malaria vaccine is currently in a phase Ia trail in Germany, and a Phase Ib trial in Benin. The blood-stage malaria vaccine is currently in Phase IIa trial and is expecting results by the end of 2018. Several transmission-blocking candidates have been identified over the years with some of the most prominent being pfs48/45, Pfs230C and Pfs25(10). Other vaccine targets focus on blood-stage malaria such as Rh5, PfRIPR and CyrPA. We will present data on the development of a high producing Pfs25 monoclonal cell line and the purification from said cell line,as well as expression data on a range of other malaria vaccine targets. This present the clinically validated ExpreS2 platform as a complete system for a wide range of malaria targeting vaccines. (1) Adams M.D. et al. Science 2000 287:2185-2195 (2) Ashburner M, et al. Genome Res. 2005 Dec;15(12):1661-7 (3) Neumüller RA, et al. Wiley Interdiscip Rev Syst Biol Med. 2011 Jul-Aug; 3(4):471-8 (4) D’Ambrosio M.V. et al. J. Cell Biol. Vol. 191 No. 3 471–478 (5) Schetz J.A. et al. Protein Expression in the Drosophila Schneider 2 Cell System, Current Protocols in Neuroscience, 2004 (6) Yang L. et al. J Virol. 2012, Jul;86(14):7662-76. (7) Wright K.E. et al. Nature, 2014 Nov 20;515(7527):427-30 (8) Hjerrild K.A. et al. Sci Rep. 2016 Jul 26;6:30357 (9) Nielsen M.A. et al. PLoS One. 2015 Sep 1;10(9):e0135406 (10) Chaturvedi N et al. Indian J Med Res. 2016 Jun;143(6):696-71

    Viral vectored transmission blocking vaccines against Plasmodium falciparum

    Get PDF
    Background: Transmission blocking vaccines (TBVs) target sexual develop¬ment of the parasite within the mosquito and aim to prevent transmission of malaria from one individual to another. Antibodies raised against Pfs48/45, Pfs230 Region C, PfHAP2, and Anopheles gambiae Alanyl Aminopeptidase N1 (AgAPN1) proteins reduce transmission i.e. have transmission blocking activity [1–5]. Recombinant simian Adenovirus (AdC63 serotype) and Modified Vaccinia Ankara (MVA) viral vectors have been shown to induce high antibody titres to asexual parasite antigens in animal studies [6]. Materials and methods: Protein sequences for each of the antigens were codon optimised for expression in humans and cloned into shuttle vectors, which were then recombined with the parental virus and purified to obtain virus expressing the antigen of interest. Mice were vaccinated with AdC63 (i.m.), sera was taken after 2 weeks, and will be followed by an MVA boost (i.d.) eight weeks after the prime. Antibodies were assayed by a standardised ELISA, and transmission blocking activity assessed using a standardised membrane feeding assay (SMFA). Conclusion: Induction of high antibody tires using this vaccine platform could be used together with other control measures to achieve elimination and/or eradication of the disease at a local or national level

    T cell responses induced by adenoviral vectored vaccines can be adjuvanted by fusion of antigen to the oligomerization domain of C4b-binding protein.

    Get PDF
    Viral vectored vaccines have been shown to induce both T cell and antibody responses in animals and humans. However, the induction of even higher level T cell responses may be crucial in achieving vaccine efficacy against difficult disease targets, especially in humans. Here we investigate the oligomerization domain of the α-chain of C4b-binding protein (C4 bp) as a candidate T cell "molecular adjuvant" when fused to malaria antigens expressed by human adenovirus serotype 5 (AdHu5) vectored vaccines in BALB/c mice. We demonstrate that i) C-terminal fusion of an oligomerization domain can enhance the quantity of antigen-specific CD4(+) and CD8(+) T cell responses induced in mice after only a single immunization of recombinant AdHu5, and that the T cells maintain similar functional cytokine profiles; ii) an adjuvant effect is observed for AdHu5 vectors expressing either the 42 kDa C-terminal domain of Plasmodium yoelii merozoite surface protein 1 (PyMSP1(42)) or the 83 kDa ectodomain of P. falciparum strain 3D7 apical membrane antigen 1 (PfAMA1), but not a candidate 128kDa P. falciparum MSP1 biallelic fusion antigen; iii) following two homologous immunizations of AdHu5 vaccines, antigen-specific T cell responses are further enhanced, however, in both BALB/c mice and New Zealand White rabbits no enhancement of functional antibody responses is observed; and iv) that the T cell adjuvant activity of C4 bp is not dependent on a functional Fc-receptor γ-chain in the host, but is associated with the oligomerization of small (<80 kDa) antigens expressed by recombinant AdHu5. The oligomerization domain of C4 bp can thus adjuvant T cell responses induced by AdHu5 vectors against selected antigens and its clinical utility as well as mechanism of action warrant further investigation

    Combination of RTS,S and Pfs25-IMX313 Induces a Functional Antibody Response Against Malaria Infection and Transmission in Mice

    Get PDF
    The last two decades saw a dramatic reduction in malaria incidence rates, but this decrease has been stalling recently, indicating control measures are starting to fail. An effective vaccine, particularly one with a marked effect on disease transmission, would undoubtedly be an invaluable tool for efforts to control and eliminate malaria. RTS,S/AS01, the most advanced malaria vaccine to date, targets the parasite before it invades the liver and has the potential to prevent malaria disease as well as transmission by preventing blood stage infection and therefore gametocytogenesis. Unfortunately efficacy in a phase III clinical trial was limited and it is widely believed that a malaria vaccine needed to contain multiple antigens from different life-cycle stages to have a realistic chance of success. A recent study in mice has shown that partially efficacious interventions targeting the pre-erythrocytic and the sexual lifecycle stage synergise in eliminating malaria from a population over multiple generations. Hence, the combination of RTS,S/AS01 with a transmission blocking vaccine (TBV) is highly appealing as a pragmatic and powerful way to increase vaccine efficacy. Here we demonstrate that combining Pfs25-IMX313, one of the TBV candidates currently in clinical development, with RTS,S/AS01 readily induces a functional immune response against both antigens in outbred CD1 mice. Formulation of Pfs25-IMX313 in AS01 significantly increased antibody titres when compared to formulation in Alhydrogel, resulting in improved transmission reducing activity in standard membrane feeding assays (SMFA). Upon co-formulation of Pfs25-IMX313 with RTS,S/AS01, the immunogenicity of both vaccines was maintained, and functional assessment of the induced antibody response by SMFA and inhibition of sporozoite invasion assay (ISI) showed no reduction in biological activity against parasites of both lifecycle stages. Should this findings be translatable to human vaccination this could greatly aid efforts to eliminate and eventually eradicate malaria

    Adenovirus-prime and baculovirus-boost heterologous immunization achieves sterile protection against malaria sporozoite challenge in a murine model.

    Get PDF
    With the increasing prevalence of artemisinin-resistant malaria parasites, a highly efficacious and durable vaccine for malaria is urgently required. We have developed an experimental virus-vectored vaccine platform based on an envelope-modified baculovirus dual-expression system (emBDES). Here, we show a conceptually new vaccine platform based on an adenovirus-prime/emBDES-boost heterologous immunization regimen expressing the Plasmodium falciparum circumsporozoite protein (PfCSP). A human adenovirus 5-prime/emBDES-boost heterologous immunization regimen consistently achieved higher sterile protection against transgenic P. berghei sporozoites expressing PfCSP after a mosquito-bite challenge than reverse-ordered or homologous immunization. This high protective efficacy was also achieved with a chimpanzee adenovirus 63-prime/emBDES-boost heterologous immunization regimen against an intravenous sporozoite challenge. Thus, we show that the adenovirus-prime/emBDES-boost heterologous immunization regimen confers sterile protection against sporozoite challenge by two individual routes, providing a promising new malaria vaccine platform for future clinical use

    Poor CD4+ T Cell Immunogenicity Limits Humoral Immunity to P. falciparum Transmission-Blocking Candidate Pfs25 in Humans.

    Get PDF
    Plasmodium falciparum transmission-blocking vaccines (TBVs) targeting the Pfs25 antigen have shown promise in mice but the same efficacy has never been achieved in humans. We have previously published pre-clinical data related to a TBV candidate Pfs25-IMX313 encoded in viral vectors which was very promising and hence progressed to human clinical trials. The results from the clinical trial of this vaccine were very modest. Here we unravel why, contrary to mice, this vaccine has failed to induce robust antibody (Ab) titres in humans to elicit transmission-blocking activity. We examined Pfs25-specific B cell and T follicular helper (Tfh) cell responses in mice and humans after vaccination with Pfs25-IMX313 encoded by replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA) delivered in the heterologous prime-boost regimen via intramuscular route. We found that after vaccination, the Pfs25-IMX313 was immunologically suboptimal in humans compared to mice in terms of serum Ab production and antigen-specific B, CD4+ and Tfh cell responses. We identified that the key determinant for the poor anti-Pfs25 Ab formation in humans was the lack of CD4+ T cell recognition of Pfs25-IMX313 derived peptide epitopes. This is supported by correlations established between the ratio of proliferated antigen-specific CD4+/Tfh-like T cells, CXCL13 sera levels, and the corresponding numbers of circulating Pfs25-specific memory B cells, that consequently reflected on antigen-specific IgG sera levels. These correlations can inform the design of next-generation Pfs25-based vaccines for robust and durable blocking of malaria transmission

    Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure.

    Get PDF
    The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses

    Antibacterial efficacy of Jackfruit rag extract against clinically important pathogens and validation of its antimicrobial activity in Shigella dysenteriae infected Drosophila melanogaster infection model

    Get PDF
    513-522Exploration of alternative sources of antibacterial compounds is an important and possibly an effective solution to the current challenges in antimicrobial therapy. Plant derived wastes may offer one such alternative. Here, we investigated the antibacterial property of extract derived from a part of the Jackfruit (Artocarpus heterophyllus Lam.) called ‘rag’, generally considered as fruit waste. Morpho-physical characterization of the Jackfruit rag extract (JFRE) was performed using Gas-chromatography, where peaks indicative of furfural; pentanoic acid; and hexadecanoic acid were observed. In vitro biocompatibility of JFRE was performed using the MTT assay, which showed comparable cellular viability between extract-treated and untreated mouse fibroblast cells. Agar well disc diffusion assay exhibited JFRE induced zones of inhibition for a wide variety of laboratory and clinical strains of Gram-positive and Gram-negative bacteria. Analysis of electron microscope images of bacterial cells suggests that JFRE induces cell death by disintegration of the bacterial cell wall and precipitating intracytoplasmic clumping. The antibacterial activity of the JFREs was further validated in vivo using Shigella dysenteriae infected fly model, where JFRE pre-fed flies infected with S. dysenteriae had significantly reduced mortality compared to controls. JFRE demonstrates broad antibacterial property, both in vitro and in vivo, possibly by its activity on bacterial cell wall

    Safety and Immunogenicity of ChAd63/MVA Pfs25-IMX313 in a Phase I First-in-Human Trial.

    Get PDF
    BACKGROUND: Transmission blocking vaccines targeting the sexual-stages of the malaria parasite could play a major role to achieve elimination and eradication of malaria. The Plasmodium falciparum Pfs25 protein (Pfs25) is the most clinically advanced candidate sexual-stage antigen. IMX313, a complement inhibitor C4b-binding protein that forms heptamers with the antigen fused to it, improve antibody responses. This is the first time that viral vectors have been used to induce antibodies in humans against an antigen that is expressed only in the mosquito vector. METHODS: Clinical trial looking at safety and immunogenicity of two recombinant viral vectored vaccines encoding Pfs25-IMX313 in healthy malaria-naive adults. Replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding Pfs25-IMX313, were delivered by the intramuscular route in a heterologous prime-boost regimen using an 8-week interval. Safety data and samples for immunogenicity assays were taken at various time-points. RESULTS: The reactogenicity of the vaccines was similar to that seen in previous trials using the same viral vectors encoding other antigens. The vaccines were immunogenic and induced both antibody and T cell responses against Pfs25, but significant transmission reducing activity (TRA) was not observed in most volunteers by standard membrane feeding assay. CONCLUSION: Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. However, the transmission reducing activity of the antibodies generated were weak, suggesting the need for an alternative vaccine formulation. TRIAL REGISTRATION: Clinicaltrials.gov NCT02532049
    corecore