25 research outputs found

    Chemical pollution: a growing peril and potential catastrophic risk to humanity

    Get PDF
    Anthropogenic chemical pollution has the potential to pose one of the largest environmental threats to humanity, but global understanding of the issue remains fragmented. This article presents a comprehensive perspective of the threat of chemical pollution to humanity, emphasising male fertility, cognitive health and food security. There are serious gaps in our understanding of the scale of the threat and the risks posed by the dispersal, mixture and recombination of chemicals in the wider environment. Although some pollution control measures exist they are often not being adopted at the rate needed to avoid chronic and acute effects on human health now and in coming decades. There is an urgent need for enhanced global awareness and scientific scrutiny of the overall scale of risk posed by chemical usage, dispersal and disposal

    The Fate of Chemical Pollutants with Soil Properties and Processes in the Climate Change Paradigm—A Review

    No full text
    Heavy metal(loid)s and organic contaminants are two major groups of pollutants in soils. The fate and exposure of such pollutants in soil depends on their chemical properties, speciation, and soil properties. Soil properties and processes that control the toxicological aspects of pollutants include temperature, moisture, organic matter, mineral fractions, and microbial activities. These processes are vulnerable to climate change associated with global warming, including increased incidences of extreme rainfall, extended dry periods, soil erosion, and a rise in sea level. Here we explain evidence that relates to the effects of climate change-driven soil processes on the mobility, transport, and storage of pollutants in soil. The review found that changes in climate could increase human exposure to soil contaminants mainly due to processes involving soil organic carbon (SOC), surface runoff, redox state, and microbial community. However, uncertainties remain in relation to the extent of contaminant toxicity to human health, which is linked to global change drivers

    Highly Stable and Nontoxic Lanthanum-Treated Activated Palygorskite for the Removal of Lake Water Phosphorus

    No full text
    Nutrient pollution of surface water, such as excess phosphate loading on lake surface water, is a significant issue that causes ecological and financial damage. Despite many technologies that can remove available phosphate, such as material-based adsorption of those available phosphate ions, the development of a material that can trap them from the surface water is worth doing, considering other aspects. These aspects are: (i) efficient adsorption by the material while it settles down to the water column, and (ii) the material itself is not toxic to the lake natural microorganism. Considering these aspects, we developed a trace lanthanum-grafted surface-modified palygorskite, a fibrous clay mineral. It adsorbed a realistic amount of phosphate from the lake water (typically 0.13–0.22 mg/L). The raw and modified palygorskite (Pal) includes unmodified Australian Pal, heated (at ~400 °C) Pal, and acid (with 3 M HCl)-treated Pal. Among them, while acid-treated Pal grafted a lower amount of La, it had a higher adsorption capacity (1.243 mg/g) and a quicker adsorption capacity in the time it took to travel to the bottom of the lake (97.6% in 2 h travel time), indicating the adsorption role of both La and clay mineral. The toxicity of these materials was recorded null, and in some period of the incubation of the lake microorganism with the material mixture, La-grafted modified clays increased microbial growth. As a total package, while a high amount of La on the already available material could adsorb a greater amount of phosphate, in this study a trace amount of La on modified clays showed adsorption effectiveness for the realistic amount of phosphate in lake water without posing added toxicity

    Influence of thermally modified palygorskite on the viability of polycyclic aromatic hydrocarbon-degrading bacteria

    No full text
    Thermal activation of palygorskite is considered as a simple and cost-effective method for modifying its structural and surface properties, which can be congenial for the adsorptive removal of environmental contaminants. However, for a more efficient removal of organic contaminants like polycyclic aromatic hydrocarbons (PAH), clay-microbial synergy combining both adsorption and biodegradation is an emerging strategy. In this study, we investigated the compatibility of heat treated palygorskite products (100–900 °C) with a PAH-degrading soil bacterium Burkholderia sartisoli. The mineralogical and physico-chemical properties were characterised in detail, and the bacterial adhesion to the substrate and their growth were observed in relation to these properties. The major variation in the cation exchange capacity (CEC), surface area, water content and the elemental dissolution in the aqueous medium occurred in the palygorskite products heated at extreme temperature (700–900 °C). These changes significantly influenced the bacterial growth and attachment. The maximum viability was imparted by the palygorskite product obtained at 400 °C. Dissolution of Al from products heated above 500 °C also posed inhibitory effect on bacterial growth in the aqueous media. This study provided valuable information about the mechanisms of bacterial viability as affected by modified clay minerals, which is important for developing a novel clay-modulated-bioremediation technology

    Bacterial mineralization of phenanthrene on thermally activated palygorskite:A 14C radiotracer study

    No full text
    Clay-bacterial interaction can significantly influence the biodegradation of organic contaminants in the environment. A moderate heat treatment of palygorskite could alter the physicochemical properties of the clay mineral and thus support the growth and function of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria. By using 14C-labelled phenanthrene and a model bacterium Burkholderia sartisoli, we studied the mineralization of phenanthrene on the surface of a moderately heat-treated (up to 400 °C) palygorskite. The heat treatment at 400 °C induced a reduction of binding sites (e.g., by the elimination of organic matter and/or channel shrinkage) in the palygorskite and thus imparted a weaker sequestration of phenanthrene on its surface and within the pores. As a result, a supplement with the thermally modified palygorskite (400 °C) significantly increased (20–30%; p < 0.05) the biomineralization of total phenanthrene in a simulated soil slurry system. These results are highly promising to develop a clay mineral based technology for the bioremediation of PAH contaminants in water and soil environments

    Clays and modified clays in remediating environmental pollutants

    No full text
    International audienc

    Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil

    No full text
    Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad® 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC > unmodified bentonite > Arquad–bentonite). The MIOC variably increased the microbial count (10–43%) as well as activities (respiration 3–44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils

    Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil:A 14C-tracer study

    No full text
    Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5–3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A14C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5–8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field

    Modified osmium tracer technique enables precise microscopic delineation of hydrocarbon-degrading bacteria in clay aggregates

    No full text
    Clay minerals can support bacterial proliferation, induce the formation of clay–bacterial aggregates, and finally a clay-based biofilm. However, how these abiotic and biotic entities interact in a microhabitat is not fully understood. Visualization of the clay–bacterial micro-aggregate under scanning electron microscope (SEM) and profiling the associated elemental signature through energy dispersive X-ray spectroscopy (EDS) can potentially unravel the mechanisms of a complex clay–bacterial interaction. Osmium (Os) was used previously to enhance the visualization of microbial substances, but the delineation of bacterial cells from clay particles in a micro-aggregate was not tried before. In this study, bacterial cells in a clay–bacterial aggregate (Burkholderia sartisoli with montmorillonite and kaolinite) were specifically stained with osmium (Os) which served as the EDS tracer of the biotic component of the interaction. Simultaneously silicon (Si) provided the signature of the clay minerals. X-ray elemental profiling (line and field mapping) successfully delineated the individual components of the clay–bacterial aggregate. Thus, this study presented a simple Os-based SEM-EDS technique which could facilitate the microanalysis of bacterial microhabitat within a complex environmental substrate

    Specific adsorption of cadmium on surface-engineered biocompatible organoclay under metal-phenanthrene mixed-contamination

    No full text
    Bioremediation of polycyclic aromatic hydrocarbons (PAHs) is extremely challenging when they coexist with heavy metals. This constrain has led to adsorption-based techniques that help immobilize the metals and reduce toxicity. However, the adsorbents can also non-selectively bind the organic compounds, which reduces their bioavailability. In this study we developed a surface-engineered organoclay (Arquad ® 2HT-75-bentonite-palmitic acid) which enhanced bacterial proliferation and adsorbed cadmium, but elevated phenanthrene bioavailability. Adsorption models of single and binary solutes revealed that the raw bentonite adsorbed cadmium and phenanthrene non-selectively at the same binding sites and sequestrated phenanthrene. In contrast, cadmium selectively bound to the deprotonated state of carboxyl groups in the organoclay and phenanthrene on the outer surface of the adsorbent led to a microbially congenial microenvironment with a higher phenanthrene bioavailability. This study provided valuable information which would be highly important for developing a novel clay-modulated bioremediation technology for cleaning up PAHs under mixed-contaminated situations
    corecore