11,578 research outputs found

    Experimental apparatus for investigation of fan aeroelastic instabilities in turbomachinery

    Get PDF
    The application, installation, and monitoring of dynamic strain gage instrumentation on the rotating fan blades for subsonic stalled flutter mode of the first fan rotor are described. The engine installation, the modifications to the engine controls to obtain off schedule operation of the fan, engine aerodynamic instrumentation, and general data acquisition systems are discussed

    The Lobster at Home in Maine Waters

    Get PDF
    An article reprinted from the June, 1881 edition of Scribner\u27s Monthly by L. Berliawsky-Books, Camden, Maine. Ten unnumbered pages. Includes several illustrations

    Literature Survey of Radiochemical Cross-section Data Below 425 Mev

    Get PDF
    Literature survey of radiochemical cross sections below 425 Me

    Phase Transitions in the Spin-Half J_1--J_2 Model

    Full text link
    The coupled cluster method (CCM) is a well-known method of quantum many-body theory, and here we present an application of the CCM to the spin-half J_1--J_2 quantum spin model with nearest- and next-nearest-neighbour interactions on the linear chain and the square lattice. We present new results for ground-state expectation values of such quantities as the energy and the sublattice magnetisation. The presence of critical points in the solution of the CCM equations, which are associated with phase transitions in the real system, is investigated. Completely distinct from the investigation of the critical points, we also make a link between the expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state correlation coefficients. We are thus able to present evidence of the breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively, given (to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure

    A quantum Peierls-Nabarro barrier

    Get PDF
    Kink dynamics in spatially discrete nonlinear Klein-Gordon systems is considered. For special choices of the substrate potential, such systems support continuous translation orbits of static kinks with no (classical) Peierls-Nabarro barrier. It is shown that these kinks experience, nevertheless, a lattice-periodic confining potential, due to purely quantum effects anaolgous to the Casimir effect of quantum field theory. The resulting ``quantum Peierls-Nabarro potential'' may be calculated in the weak coupling approximation by a simple and computationally cheap numerical algorithm, which is applied, for purposes of illustration, to a certain two-parameter family of substrates.Comment: 13 pages LaTeX, 7 figure

    Systematic Inclusion of High-Order Multi-Spin Correlations for the Spin-121\over2 XXZXXZ Models

    Full text link
    We apply the microscopic coupled-cluster method (CCM) to the spin-121\over2 XXZXXZ models on both the one-dimensional chain and the two-dimensional square lattice. Based on a systematic approximation scheme of the CCM developed by us previously, we carry out high-order {\it ab initio} calculations using computer-algebraic techniques. The ground-state properties of the models are obtained with high accuracy as functions of the anisotropy parameter. Furthermore, our CCM analysis enables us to study their quantum critical behavior in a systematic and unbiased manner.Comment: (to appear in PRL). 4 pages, ReVTeX, two figures available upon request. UMIST Preprint MA-000-000

    Pressure-induced phase transition and bi-polaronic sliding in a hole-doped Cu_2O_3 ladder system

    Full text link
    We study a hole-doped two-leg ladder system including metal ions, oxygen, and electron-lattice interaction, as a model for Sr_{14-x}Ca_xCu_{24}O_{41-\delta}. Single- and bi-polaronic states at 1/4-hole doping are modeled as functions of pressure by applying an unrestricted Hartree-Fock approximation to a multiband Peierls-Hubbard Hamiltonian. We find evidence for a pressure-induced phase transition between single-polaron and bi-polaron states. The electronic and phononic excitations in those states, including distinctive local lattice vibrational modes, are calculated by means of a direct-space Random Phase approximation. Finally, as a function of pressure, we identify a transition between site- and bond-centered bi-polarons, accompanied by a soft mode and a low-energy charge-sliding mode. We suggest comparisons with available experimented data

    High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    Get PDF
    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. N\'eel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J1J_1--J2J_2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J2/J1=0.5J_2/J_1=0.5. The dimerized phase is stable over a range of values for J2/J1J_2/J_1 around 0.5. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J2/J1J_2/J_1. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the N\'eel and the dimerized phases. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4_4O9_9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, N\'eel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are reproduced by the CCM ket state in their relevant limits.Comment: 34 pages, 13 figures, 2 table

    Vibration effects on heat transfer in cryogenic systems Quarterly progress report no. 1, Jun. 1 - Aug. 31, 1966

    Get PDF
    Vibration effects on natural convection and fluid transport properties in cryogenic system
    • …
    corecore