194 research outputs found

    Energy performance of a ventilation system for an apartment according to the Italian regulation

    Get PDF
    According to recent regulations on energy saving in buildings, all new structures should guarantee high-energy performance. To this aim, the building envelope should be equipped with insulated walls and high-efficiency windows. This approach leads to considerable thermal insulation, but at the same time, in the absence of a suitable ventilation system, it results in a worsening of indoor air quality. A healthy quality of life requires good indoor air quality; especially in places where people spend most of their time, adequate air exchanges should be guaranteed and indoor pollution reduced to "acceptable" levels. In the present work, we performed a dynamic simulation of a ventilation system for an apartment using a mathematical model, i.e., the Trnsys commercial code. The model has been applied to an apartment of 66 m2 inside a condominium located in Bologna (Italy), but can also be used for other types of buildings as well. The variation of energy request due to different measurements of volume flow rate was evaluated

    CONSTRUCTAL THEORY APPLIED TO THE GEOMETRIC OPTIMIZATION OF ELLIPTICAL CAVITIES INTO A SOLID CONDUCTING WALL

    Get PDF
    This work reports, according to Bejan’s Constructal theory, the geometric optimization of an elliptical cavity that intrudes into a solid conducting wall. The objective is to minimize the global thermal resistance between the solid and the cavity. There is uniform heat generation on the solid wall. The cavity is optimized for two sets of thermal conditions: isothermal cavity and cavity bathed by a steady stream of fluid. The solid conducting wall is isolated on the external perimeter. The total volume and the elliptical cavity volume are fixed while the geometry of the cavity is free to vary. The results show that the optimized geometrical shapes are relatively robust, i.e., insensitive to changes in some of the design parameters: the cavity shape is optimal when penetrates the conducting wall almost completely

    Effect of extended surfaces on lauric acid melting process in annular cavities

    Get PDF
    The objective of the present work is to parametrically analyze the effect of extended surfaces’ proportion and positioning on the lauric acid melting process, in an annular cavity. In total 46 geometric configurations were studied, varying between 5 area ratios, 5 proportions, and 2 positions of the extended surface. Numerical simulations performed with the finite volume method were used to conduct the study. The numerical model, composed of the continuity, momentum conservation, and energy conservation equations, plus the enthalpy-porosity phase change model, was validated with experimental data from the literature. The Grid Convergence Index (GCI) was used to evaluate the computational mesh, resulting in an average index of 0.0026%. The results are presented in terms of liquid fraction vs Fourier, and Nusselt number vs. Fourier. Besides, velocity vectors, and streamlines, liquid fraction, and temperature fields, were presented, comparing different instants and geometric arrangements. For the analysis of the results, the melting time was considered as a performance indicator. The results revealed that: while there is solid PCM in the cavity's upper section, the melting rate in systems with horizontal extensions is 15% higher than systems with vertical extensions; when the extended surface thinness is increased, the overall melting time is reduced by more than 10% in vertical arrangements and less than 1.5% in horizontal arrangements; the total melting time is nearly 45% faster in systems with vertical extensions than in systems with horizontal extensions

    Influence of Nanoparticles and Magnetic Field on the Laminar Forced Convection in a Duct Containing an Elastic Fin

    Get PDF
    In the present paper, an investigation of the effect of a magnetic field and nanoparticles suspended in pure water on the forced flow in a duct containing an elastic rectangular fin is performed. The nanofluid, i.e., CuO nanoparticles suspended in water, flow in the duct with an inlet fully developed velocity profile and a cold temperature. The lower boundary of the duct is kept at a hot temperature, while the upper boundary is adiabatic. According to the ALE formulation, numerical simulations of the laminar flow are carried out, by employing the software package Comsol Multiphysics, to solve the governing equation system: mass, momentum, energy, and deformation. The behavior of the Nusselt number, of the temperature and velocity fields as well as of the stress profiles are presented and interpreted. As a result, the addition of CuO nanoparticles to pure water improves the local and global heat transfer rate by up to 21.33% compared to pure water. On the other hand, it causes an additional deformation of the elastic fin as well as the increase of the stress due to the presence of the nanoparticles, leading to an increase of its maximum displacement of 34.58% compared to the case of pure water flow. Moreover, the enhancement of the flexibility of the fin (and thus its deformation) leads to a relative reduction in terms of convective heat transfer rate, especially downstream of the fin

    Mesoporous Si and multi-layered Si/C films by Pulsed Laser Deposition as Li-ion microbattery anodes

    Get PDF
    Silicon is a very attractive Li-ion battery anode material due to its high theoretical capacity, but proper nanostructuring is needed to accommodate the large volume expansion/shrinkage upon reversible cycling. Hereby, novel mesoporous Si nanostructures are grown at room temperature by simple and rapid Pulsed Laser Deposition (PLD) directly on top of the Cu current collector surface. The samples are characterised from the structural/morphological viewpoint and their promising electrochemical behaviour demonstrated in lab-scale lithium cells. Depending on the porosity, easily tuneable by PLD, specific capacities approaching 250 μAh cm−2 are obtained. Successively, newly elaborated bicomponent silicon/carbon nanostructures are fabricated in one step by alternating PLD deposition of Si and C, thus resulting in novel multi-layered composite mesoporous films exhibiting profoundly improved performance. Alternated deposition of Si/C layers by PLD is proven to be a straightforward method to produce multi-layered anodes in one processing step. The addition of carbon and mild annealing at 400 °C stabilize the electrochemical performance of the Si based nanostructures in lab-scale lithium cells, allowing to reach very stable prolonged reversible cycling at improved specific capacity values. This opens the way to further reducing processing steps and processing time, which are key aspects when upscaling is sought

    Optimum sizing of cogeneration plants by means of a genetic algorithm optimization: A case study

    Get PDF
    In the context of increasing energy consumption, multi-generation systems such as combined heat and power generation (CHP) are attractive to meet the increasingly stringent requirements regarding energy saving in buildings. Hospitals are great consumers of energy, both electrical and thermal: the use of heating and cooling equipment for maintaining satisfactory comfort and indoor air quality for the patients as well as the adoption of several electrical health equipment result in the highest energy consumption per unit floor area of the entire building sector. In the present study, co/tri-generation systems\u2019 optimal set-up, size and operation are investigated for small/medium size hospital facilities. More specifically, after the presentation of the energy consumption profiles for a medium size hospital with 600 beds, set as reference case for this study, a parametric analysis has been carried out varying the peak loads of the user. For each of the proposed scenarios, the optimal plant configuration (sizing of all the energy production systems) has been outlined by means of a numerical code (Trigen 3.0) in-house developed. Afterwards, in order to optimize the load distribution in a smart grid characterized by electrical, thermal, cooling and fuel energy fluxes, an ulterior numerical investigation has been performed. The software, named EGO (Energy Grids Optimizer) consists of a genetic algorithm procedure: it defines the optimal load distribution of a number of energy systems operating into a smart grid based on the minimization of an objective function which expresses the total cost of energy production. Finally, an economic analysis has been carried out in order to evaluate the profitability of the proposed CHP-heat pump scenario

    Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design

    Get PDF
    In post-operative scenarios of arterial graft surgeries to bypass coronary artery stenosis, fluid dynamics plays a crucial role. Problems such as intimal hyperplasia have been related to fluid dynamics and wall shear stresses near the graft junction. This study focused on the question of the use of Newtonian and non-Newtonian models to represent blood in this type of problem in order to capture important flow features, as well as an analysis of the performance of geometry from the view of Constructive Theory. The objective of this study was to investigate the effects rheology on the steady-state flow and on the performance of a system consisting of an idealized version of a partially obstructed coronary artery and bypass graft. The Constructal Design Method was employed with two degrees of freedom: the ratio be- tween bypass and artery diameters and the junction angle at the bypass inlet. The flow problem was solved numerically using the Finite Volume Method with blood modeled employing the Carreau equation for viscosity. The Computational Fluid Dynamics model associated with the Sparse Grid method generated eighteen response surfaces, each representing a severe stenosis degree of 75% for specific combinations of rheological parameters, dimensionless viscosity ratio, Carreau number and flow index at two distinct Reynolds numbers of 150 and 250. There was a considerable dependence of the pressure drop on rhe- ological parameters. For the two Reynolds numbers studied, the Newtonian case presented the lowest value of the dimensionless pressure drop, suggesting that the choice of applying Newtonian blood may underestimate the value of pressure drop in the system by about 12.4% ( Re = 150) and 7.8% ( Re = 250). Even so, results demonstrated that non-Newtonian rheological parameters did not influence either the shape of the response surfaces or the optimum bypass geometry, which consisted of a diameter ratio of 1 and junction angle of 30 °. However, the viscosity ratio and the flow index had the greatest im- pact on pressure drop, recirculation zones and wall shear stress. Rheological parameters also affected the recirculation zones downstream of stenosis, where intimal hyperplasia is more prevalent. Newto- nian and most non-Newtonian results had similar wall shear stresses, except for the non-Newtonian case with high viscosity ratio. In the view of Constructal Design, the geometry of best performance was in- dependent of the rheological model. However, rheology played an important role on pressure drop and flow dynamics, allowing the prediction of recirculation zones that were not captured by a Newtonian model

    Constructal design of an arterial bypass graft

    Get PDF
    Arterial bypass grafts tend to fail after some years due to intimal hyperplasia\u2014an abnormal proliferation of smooth muscle cells that leads to stenosis and graft occlusion. In this regard and on the basis of the constructal design method, this study seeks to investigate the effect of geometric parameters\u2014stenosis degree, junction angle, and diameter ratio\u2014on the flow through a bypass graft circumventing an idealized, partially stenosed coronary artery. The computational model assumes a steady\u2010state Newtonian fluid flow through an artery stenosis degree from 25% to 75%. A computational fluid dynamics model and a response surface methodology were employed to assess the effects of the project parameters on pressure drop. As diameter ratio increases to 1 and the junction angle decreases to 30\ub0, the pressure drop decreases and there is a considerable dependence of pressure drop on the stenosis degree. The effects of the diameter ratio are more pronounced than those of junction angle on the velocity field and wall shear stress. The application of the constructal design method in hemodynamicsmight be a good alternative to provide configurations with enhanced performance and to provide valuable results to the understanding of biological flows

    Feasibility and effectiveness assessment of sars-cov-2 antigenic tests in mass screening of a pediatric population and correlation with the kinetics of viral loads

    Get PDF
    The gold standard for diagnosis of SARS-CoV-2 infection has been nucleic acid amplification tests (NAAT). However, rapid antigen detection kits (Ag-RDTs), may offer advantages over NAAT in mass screening, generating results in minutes, both as laboratory-based test or point-of-care (POC) use for clinicians, at a lower cost. We assessed two different POC Ag-RDTs in mass screening versus NAAT for SARS-CoV-2 in a cohort of pediatric patients admitted to the Pediatric Emergency Unit of IRCCS—Polyclinic of Sant’Orsola, Bologna (from November 2020 to April 2021). All patients were screened with nasopharyngeal swabs for the detection of SARS-CoV-2-RNA and for antigen tests. Results were obtained from 1146 patients. The COVID-19 Ag FIA kit showed a baseline sensitivity of 53.8% (CI 35.4–71.4%), baseline specificity 99.7% (CI 98.4–100%) and overall accuracy of 80% (95% CI 0.68–0.91); the AFIAS COVID-19 Ag kit, baseline sensitivity of 86.4% (CI 75.0–93.9%), baseline specificity 98.3% (CI 97.1–99.1%) and overall accuracy of 95.3% (95% CI 0.92– 0.99). In both tests, some samples showed very low viral load and negative Ag-RDT. This disagreement may reflect the positive inability of Ag-RDTs of detecting antigen in late phase of infection. Among all cases with positive molecular test and negative antigen test, none showed viral loads > 106 copies/mL. Finally, we found one false Ag-RDTs negative result (low cycle thresholds; 9 × 105 copies/mL). Our results suggest that both Ag-RDTs showed good performances in detection of high viral load samples, making it a feasible and effective tool for mass screening in actively infected children

    Integrated transcriptomics and metabolomics reveal signatures of lipid metabolism dysregulation in HepaRG liver cells exposed to PCB 126.

    Get PDF
    Chemical pollutant exposure is a risk factor contributing to the growing epidemic of non-alcoholic fatty liver disease (NAFLD) affecting human populations that consume a western diet. Although it is recognized that intoxication by chemical pollutants can lead to NAFLD, there is limited information available regarding the mechanism by which typical environmental levels of exposure can contribute to the onset of this disease. Here, we describe the alterations in gene expression profiles and metabolite levels in the human HepaRG liver cell line, a validated model for cellular steatosis, exposed to the polychlorinated biphenyl (PCB) 126, one of the most potent chemical pollutants that can induce NAFLD. Sparse partial least squares classification of the molecular profiles revealed that exposure to PCB 126 provoked a decrease in polyunsaturated fatty acids as well as an increase in sphingolipid levels, concomitant with a decrease in the activity of genes involved in lipid metabolism. This was associated with an increased oxidative stress reflected by marked disturbances in taurine metabolism. A gene ontology analysis showed hallmarks of an activation of the AhR receptor by dioxin-like compounds. These changes in metabolome and transcriptome profiles were observed even at the lowest concentration (100 pM) of PCB 126 tested. A decrease in docosatrienoate levels was the most sensitive biomarker. Overall, our integrated multi-omics analysis provides mechanistic insight into how this class of chemical pollutant can cause NAFLD. Our study lays the foundation for the development of molecular signatures of toxic effects of chemicals causing fatty liver diseases to move away from a chemical risk assessment based on in vivo animal experiments
    • …
    corecore