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Abstract  

In post-operative scenarios of arterial graft surgeries to bypass coronary artery stenosis, fluid 

dynamics plays a crucial role. Problems such as intimal hyperplasia have been related to fluid 

dynamics and wall shear stresses near the graft junction. This study focused on the question of 

the use of Newtonian and non-Newtonian models to represent blood in this type of problem in 

order to capture important flow features, as well as an analysis of the performance of geometry 

from the view of Constructive Theory.  The objective of this study was to investigate the effects 

rheology on the steady-state flow and on the performance of a system consisting of an idealized 

version of a partially obstructed coronary artery and bypass graft. The Constructal Design 

Method was employed with two degrees of freedom: the ratio between bypass and artery 

diameters and the junction angle at the bypass inlet. The flow problem was solved numerically 

using the Finite Volume Method with blood modeled employing the Carreau equation for 

viscosity. The Computational Fluid Dynamics model associated with the Sparse Grid method 

generated eighteen response surfaces, each representing a severe stenosis degree of 75% for 

specific combinations of rheological parameters, dimensionless viscosity ratio, Carreau 

number and flow index at two distinct Reynolds numbers of 150 and 250. There was a 

considerable dependence of the pressure drop on rheological parameters. For the two Reynolds 

numbers studied, the Newtonian case presented the lowest value of the dimensionless pressure 

drop, suggesting that the choice of applying Newtonian blood may underestimate the value of 

pressure drop in the system by about 12.4% (Re =150) and 7.8% (Re = 250). Even so, results 

demonstrated that non-Newtonian rheological parameters did not influence either the shape of 

the response surfaces or the optimum bypass geometry, which consisted of a diameter ratio of 

1 and junction angle of 30. However, the viscosity ratio and the flow index had the greatest 

impact on pressure drop, recirculation zones and wall shear stress. Rheological parameters 
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also affected the recirculation zones downstream of stenosis, where intimal hyperplasia is more 

prevalent. Newtonian and most non-Newtonian results had similar wall shear stresses, except 

for the non-Newtonian case with high viscosity ratio. In the view of Constructal Design, the 

geometry of best performance was independent of the rheological model. However, rheology 

played an important role on pressure drop and flow dynamics, allowing the prediction of 

recirculation zones that were not captured by a Newtonian model. 

Keywords: Constructal Design, non-Newtonian blood, Carreau model, coronary artery bypass 

graft, dimensionless pressure drop. 

 

Nomenclature 

D artery diameter [m] 

D0 stenosis diameter [m] 

D1 graft diameter [m] 

Dij strain rate tensor [s-1] 

D1/D,opt optimum diameter ratio [-] 

L artery length [m] 

M surface response verification points [-] 

n power law index [-] 

N number of mesh elements  [-] 

𝑝 dimensionless pressure drop [-] 

𝑝𝑚𝑖𝑛 minimum dimensionless pressure drop [-] 

Re Reynolds number [-] 

S stenosis degree [-] 

Um average velocity [m s-1] 

ui velocity vector [m s-1] 

𝑢̃𝑖 dimensionless velocity field [-] 

V artery volume [m³] 

V1 graft volume [m³] 

𝑋̃ dimensionless position [-] 

X position vector  [m] 



3 

𝑥̃𝑖 dimensionless position vector  [-] 

Greek symbols 

𝛼 junction angle [-] 

𝛼,opt optimum junction angle [-] 

∆𝑝 pressure drop [Pa] 

𝜂 viscosity function [Pa s] 

𝜂𝑐 characteristic viscosity [Pa s] 

𝜂0 zero shear rate viscosity [Pa s] 

𝜂∞ infinite shear rate viscosity [Pa s] 

𝜂̃ dimensionless viscosity function [-] 

𝜂∗ dimensionless viscosity ratio [-] 

𝜆 time constant [-] 

̃ Carreau number [-] 

𝜇 dynamic viscosity [Pa s] 

𝜌 mass density [kg m-3] 

𝛾̇ shear rate [s-1] 

𝜏∗ normalized shear stress [-] 

𝜏𝑖𝑗 extra-stress tensor [Pa] 

𝜏̃𝑖𝑗 dimensionless extra vector tensor field [-] 

 

 

1 INTRODUCTION 

Blood composition is defined as a suspension of red blood cells (RBC) and plasma with 

relatively low volume fractions of white blood cells and platelets (HORNER et al., 2018).  

According to Owens (2006), blood is a non-Newtonian fluid with shear-thinning, thixotropic 

and viscoelastic properties. Johnston et al. (2004) asserted that none of the viscosity models for 

blood fully expresses the effects of its complicated rheology. The blood properties are 

dependent on many factors, e.g., cell and oxygen concentrations, coagulation, and adhesion. 

Also, its viscosity varies with the percentage of the total blood volume occupied by RBC, which 

is known as hematocrit (PEREIRA et al., 2013).  
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Additionally, previous studies have shown that rheological parameters of blood vary 

from individual to individual and are directly influenced by other several factors, e.g., male or 

female, smoker or non-smoker, temperature, lipid loading, hypocaloric diet, cholesterol level 

and physical fitness index (CHO and KENSEY, 1991). Zydney et al. (1991) asserted that red 

cells deform at high shear rates, which decreases blood viscosity. At low shear rates, occurs the 

opposite, i.e., red cells aggregate and cause a substantial increase in viscosity. Marcinkowska-

Gapinska et al. (2007) studied 100 blood samples of myocardial infarction survivors treated by 

different antithrombotic drugs. Results suggested that acenocoumarol treatment could influence 

red cell deformability and rouleaux formation, while aspirin treatment did not affect any blood 

properties.  

Brun et al. (2011) concluded that physiology, not only pathology, is also closely related 

to hemorheology and might be an important modifier of blood viscosity factors. Guiraudou et 

al. (2013) demonstrated that the body mass index might increase plasma viscosity and red cell 

rigidity. Brun et al. (2016) confirmed that fat mass is an important RBC regulator for all cases 

and not only for obese subjects. Mehri et al. (2018) performed several experimental tests 

varying shear rate and different hematocrit percentages in a controlled microfluidic system. The 

effects of temperature, hematocrit, shear rate and viscosity on RBC aggregate sizes were studied 

and non-Newtonian parameters associated with power-law and Carreau models were obtained. 

Given these circumstances, several authors have studied non-Newtonian blood behavior 

in the cardiovascular system, especially in stenotic arteries, bifurcations, and ramifications. Cho 

and Kensey (1991) applied a finite element method to study the effects of non-Newtonian 

viscosity on blood flow through a stenotic coronary arterial bifurcation. It was concluded that 

non-Newtonian effects must be considered at low Reynolds numbers, corresponding to a resting 

state. Gijsen et al. (1999) investigated the influence of non-Newtonian blood properties on 

velocity distributions in a 3D model of a carotid artery bifurcation. It was concluded that 

changes in velocity distribution caused by shear thinning properties were dependent on the 

alteration of the artery geometry, i.e., in this case, bifurcations and diameter variation.  

Razavi et al. (2011) applied the index proposed by Johnston et al. (2004) in a numerical 

study of a carotid artery under symmetrical 30% – 60% stenosis with Newtonian and several 

non-Newtonian fluid models. It was concluded that the differences between models were 

relevant, especially at low inlet velocities. Bodnár et al. (2011) compared non-Newtonian 

models of flow in vessels obstructed by stenosis. The findings suggested that shear-thinning 

effects stood out in the recirculation zone downstream of stenosis and they were more 

predominant than blood viscoelastic effects.  
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Molla and Paul (2012) performed blood flow simulations in a 3D stenotic artery model 

with different blood fluid models. It was found that the recirculation zone in the region 

downstream of stenosis increased in the non-Newtonian models. Tian et al. (2013) simulated a 

2D stenosed artery and determined that results for wall shear stress (WSS) and other shear 

parameters for a non-Newtonian fluid model were smaller than those obtained for the 

Newtonian model. Karimi et al. (2014) studied numerically the flow at a realistic aorta. It was 

suggested that several non-Newtonian fluid models for blood might be employed as 

alternatives, with the exception of the Cross model, which displayed significant discrepancies 

at specific points compared to the other models.  

Fortuny et al. (2015) studied blood flow in a 3D popliteal vein model with a thrombotic 

mass. Results indicated that non-Newtonian effects were also relevant at higher blood flow 

rates, contrasting with previous studies. Weddell et al. (2015) studied a 3D idealized femoral 

artery tree and found differences in velocity, WSS and pressure parameters between Newtonian 

and Carreau-Yasuda models. Overall, it was demonstrated that Newtonian velocity profiles 

presented higher peaks than the non-Newtonian model. Also, pressure in the Newtonian model 

was lower than in the non-Newtonian one.  

Apostolidis et al. (2016) showed significant differences between the numerical 

simulations of Newtonian and non-Newtonian models of a simplified left coronary artery, 

especially at low shear rate regimes. This phenomenon was attributed to the coupling that 

existed between the low and high shear rate areas in the flow which occurred mainly in 

constrictions and bifurcations. Doost et al. (2016) performed a numerical analysis in a human 

patient-specific left ventricle and suggested that non-Newtonian models had a significant 

influence on blood flow dynamics. It was also observed that the maximum WSS value for most 

non-Newtonian models was significantly higher than the Newtonian model. Iasiello et al. 

(2017) investigated non-Newtonian effects on the blood flow through an aorta-iliac bifurcation. 

It was demonstrated that the Newtonian model was more robust at higher velocities than lower 

ones. Saedi Ardahaie et al. (2018) examined a blood fluid flow containing nanoparticles in a 

porous artery affected by magnetic field. The effects of specific physical parameters of 

Brownian motion, thermophoresis and pressure gradient on temperature, velocity and 

nanoparticles concentration profiles were examined. It was denoted the importance of 

Brownian motion and thermophoresis in temperature profiles and nanoparticles concentration. 

Also, it was demonstrated that the increase of the magnetic field parameter led to a decrease in 

blood velocity. 
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However, fewer works have focused their analysis on the non-Newtonian effects on an 

arterial bypass grafts. Abraham et al. (2005) presented a numerical optimization study of non-

Newtonian effects in an idealized 2D arterial bypass graft. It was concluded that the non-

Newtonian effects did not present significant differences in optimal shapes. Chen et al. (2006) 

applied the Carreau-Yasuda model in a stenosed coronary bypass and concluded that significant 

differences must be considered between the non-Newtonian and Newtonian fluid flows in axial 

velocity profiles, secondary flow streamlines and WSS. Results from this study supported that 

these hemodynamic differences might have significant effects downstream of the host vessel 

stenosis where intimal hyperplasia occurs predominantly. Intimal hyperplasia is an abnormal 

propagation of smooth muscle cells that causes a reduction in the bypass diameter leading to a 

new occlusion (BASSIOUNY et al., 1992). 

O´Callaghan et al. (2006) modeled blood using various constitutive equations and 

demonstrated that the choice of model had to be based according to the studied parameter, e.g., 

flow rate, steady or pulsatile flow and geometry. For the case studied (a 45º bypass), the various 

constitutive models identified areas of relative high/low WSS but their values were 

quantitatively different. Vimmr and Jonásová (2010) investigated an idealized 100% occluded 

3D bypass graft model using the Carreau–Yasuda model and confirmed that the steady non-

Newtonian flow presented significant differences not only in the values of WSS but particularly 

in the velocity profile and distribution.  

On the other hand, Vimmr et al. (2013) performed a numerical study of single, double 

and triple aortocoronary bypass grafts. It was demonstrated that non-Newtonian effects on 

blood flow were not significantly distinct from the Newtonian model and it was concluded that 

the bypass diameter was the most important parameter for the flow and WSS distribution, 

regardless of the fluid model adopted. Kim et al. (2014) performed a numerical study in an 

idealized arteriovenous bypass graft and discovered that the hematocrit variation was an 

important parameter that influenced this specific graft's hemodynamic characteristics. 

Although many works on literature indicated differences between the hemodynamic 

characteristics of the cardiovascular system, Newtonian or non-Newtonian influence on blood 

flow is still debatable, especially on arterial bypass graft designs. Furthermore, in most previous 

works that studied non-Newtonian behavior of blood, standard values for rheological 

parameters were adopted regardless of the model chosen and did not observe the variation that 

these parameters may suffer due to the several factors mentioned previously.  

In this regard, this study aims to investigate the influence of each rheological parameter 

of a Carreau fluid model for blood through the Constructal Design of an idealized arterial 
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bypass graft subjected to steady blood flow. This is a companion study to a previous study 

(DUTRA et al., 2020) that demonstrated, through the Constructal Design method, the influence 

of geometric parameters on the same graft design. In Dutra et al. (2020), the junction angle and 

diameter ratio between the bypass graft and artery were the degrees of freedom used to seek out 

configurations with best performance. It was found that a junction angle equal to 30o and the 

diameter ratio equal to 1 corresponded to the optimal configuration.  

The Constructal Law deals with the physical concepts of life, evolution, design, 

performance and time arrow (BEJAN, 2016). It states that “for a finite-size system to persist in 

time (to live), it must evolve in such a way that it provides easier access to the imposed currents 

that flow through it” (BEJAN, 1997). Constructal Design is the study and mathematical 

modeling of the evolution of flow systems. It is based on the Constructal Law and is a method 

to assess the effect of shape and geometry parameters on the performance of systems to provide 

easier access to the currents that flow through them (BEJAN and LORENTE, 2008; ROCHA 

et al., 2017). 

 

2 METHODOLOGY 

2.1 Arterial Bypass Graft Constructal Design 

The geometry under investigation is an idealized version of an artery-bypass set 

previously employed by Dutra et al. (2020). The problem domain, dimensions and lines of 

further analysis are depicted in Fig. 1. The artery is the main tube with diameter D = 3 mm, as 

suggested by Bertolotti et al. (2001) to represent the average value of a right coronary human 

artery. The artery length is equal to L, the stenosis narrowest diameter is D0 and L5 and L6 are 

the lengths to ensure fully developed flow. The bypass, with diameter D1, is located at a distance 

L2 from the center of the stenosis (D0) and the junction angle is denoted as α. This model is 

shown in Fig. 1(a), with labels for lengths, diameters and positions used in this analysis. Figure 

1(b) and Figure 1(c) show specific lines of analysis that are used herein (inner wall, outer wall 

and side wall lines). Table 1 summarizes the relative dimensions of this model. In these 

definitions, the work of Vimmr et al. (2012) was used as reference. 
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(a) 

(b) (c) 

 

Figure 1 – Geometric model. (a) Domain dimensions. (b) Lines of analysis, inner and side 

walls. (c) Lines of analysis, inner and outer walls. 

 

Table 1 – Relative dimensions for artery and graft build up. 

Parameters Values 

L/D 16.67 

L2/D 2.5 

L3/D 1 

 

The reference volume for this analysis is defined in Eq. (1) 

 

𝑽 = 𝝅
𝑫

𝟒

𝟐
𝑳                                                                                                                 (1) 

 

and the graft volume in Eq. (2) 

 

𝑉1 = 𝜋
𝐷1

4

2
𝐿4                                                                                                             (2) 

 

where dimensions D1 and L4 have been defined in Fig. 1. 

The stenosis degree is calculated with Eq. (3)  

 

𝑆 =
𝐷−𝐷0

𝐷
𝑥100%                                                                                                       (3) 

 

The flow under investigation is the steady-state, incompressible and laminar flow of 

blood which enters the domain with uniform velocity equal to Um. A critical stenosis degree S 
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equal to 75% is evaluated at two different Reynolds numbers (150 and 250). Blood is modeled 

both as a Newtonian and a non-Newtonian shear-thinning fluid with the Carreau model 

(CARREAU, 1972). 

Constructal Theory assumes that living systems evolve, limited by space, in the 

direction that provides easier access to the flows that consist in the purpose of such systems 

(BEJAN and LORENTE, 2008). The Constructal Design Method has been employed in other 

works following the method described in Fig. 2 (DOS SANTOS et al., 2017; ROCHA et al., 

2017). A flow system must be defined as well as the type of flow and its magnitude in steps 1 

and 2. In this case, the system is the set artery and the type of flow is steady-state blood flow. 

The 3rd step consists of defining a performance indicator that measures resistance to flow which 

is the design parameter to be minimized. In this case, the performance indicator is the pressure 

drop 𝑝 along the length L. The 4th and 5th steps define the constraints and degrees of freedom. 

In this system, the constraints are the set artery and bypass graft and their lengths, while the 

degrees of freedom are the junction angle,  and the graft-artery diameter ratio (D1/D). Step 6 

is the numerical solution while the optimization of step 7 consists of a search for D1/D and α 

that minimizes 𝑝 (denoted as 𝑝𝑚𝑖𝑛) for specific combinations of Carreau rheological parameters 

and Reynolds numbers. Newtonian and non-Newtonian outcomes were also compared with 

regards to the influence of each rheological parameter of the Carreau model for blood.  
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Figure 2 – Application of Constructal Design Method for the case studied. 

2.2 MATHEMATICAL MODEL 

The mathematical model for the flow through the system consists of the mass and 

momentum balance equations for incompressible flow. The dimensionless forms of these 

equations are given by Eq. (4) and Eq. (5), respectively 

 

 
𝜕𝑢𝑖

𝜕𝑥̃𝑖
= 0                                                                                                  (4) 
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𝑢̃𝑖
𝜕𝑢𝑖

𝜕𝑥̃𝑗
= −

𝜕𝑃̃

𝜕𝑥̃𝑖
+

1

𝑅𝑒

𝜕𝜏̃𝑖𝑗

𝜕𝑥𝑗
                                                                                               (5) 

 

where 𝑢̃𝑖 refers to the dimensionless velocity field; 𝑥̃𝑖 is the dimensionless position vector; 𝑃̃ is 

the dimensionless pressure; 𝜏̃𝑖𝑗 is the dimensionless extra stress tensor; and 𝑅𝑒 is the Reynolds 

number. These parameters are defined in Eq. (6) as 

 

𝑢̃𝑖 =
𝑢𝑖

𝑈𝑚
;           𝑥̃𝑖 =

𝑥

𝐷
;      𝑃̃ =

𝑝

𝜌𝑈𝑚
2  ;   𝜏̃ =

𝜏𝑖𝑗

(𝑈𝑚𝜂𝑐)/𝐷
 ;          𝑅𝑒 =

𝜌𝑈𝑚𝐷

𝜂𝑐
            (6) 

 

where  𝜌 is the mass density;  𝑈𝑚 is the average inlet velocity and 𝜂𝑐 is the characteristic 

viscosity. 

The constitutive equation for the extra stress (𝜏𝑖𝑗) is that of a generalized Newtonian 

liquid of Eq. (7) 

 

𝜏𝑖𝑗 = 2𝜂(𝛾̇)𝐷𝑖𝑗                                                                                                          (7) 

 

where 𝜂(𝛾̇) is the viscosity as a function of the magnitude of the strain rate tensor (Dij) 

(SLATTERY, 1999). Several authors, such as Cho and Kensey (1991), Johnston et al. (2004), 

Molla and Paul (2012), Pereira et al. (2013), Karimi et al. (2014), Fortuny et al. (2015), Doost 

et al. (2016), Iasiello et al. (2017) and Mehri et al. (2018) used the Carreau viscosity function 

(CARREAU, 1972) to model blood as a non-Newtonian shear-thinning fluid. The Carreau 

equation models viscosity as a function of shear rate in viscometric flows. The Carreau model 

predicts a high viscosity plateau (𝜂0) at low shear rates and a low viscosity plateau (𝜂∞) at high 

shear rates. A flow index (n) models the viscosity decay as the shear rate grows. In the case of 

non-viscometric and 3D flows, the Carreau function may be employed to represent the viscosity 

as a function of 𝛾̇, i.e., the magnitude of the strain rate tensor, as was the case in the present 

study. The Carreau viscosity function employed in the present study is shown in Eq. (8)  

 

𝜂(𝛾̇) = 𝜂∞ + (𝜂0 − 𝜂∞)(1 + (𝜆𝛾̇)2)
𝑛−1

2                                                                  (8) 

 

where 𝜂0 denotes the zero shear rate viscosity, 𝜂∞ is the infinite shear rate viscosity, 𝜆 is the 

time constant, and n the flow index. The dimensionless form of this model is given by Eq. (9) 
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𝜂̃ = 1 + (𝜂∗ − 1)(1 + (𝛾̇∗)2)
𝑛−1

2                                                                             (9) 

 

and the dimensionless parameters of Eq. (9) are given by Eq. (10) 

𝜂̃ =
𝜂(𝛾̇)

𝜂∞
;                𝜂∗ =

𝜂0

𝜂∞
;               𝛾̇∗ =

𝛾̇

𝜆
                                                             (10) 

 

where 𝜂∞ was the characteristic viscosity of Eq. (6). Another dimensionless group that is 

important is the Carreau number (DE SOUZA MENDES, 2007) which represents a 

dimensionless version of the time constant in the Carreau equation given by Eq. (11) 

 

̃ =
𝑈𝑚

𝐷
                                                                                                                    (11) 

 

It should be noted that the same dimensionless group that accounts for fluid elasticity 

using characteristic time and characteristic shear rate is also commonly known as the 

“Weissenberg Number” (ASTARITA and MARRUCCI, 1974). In the present study, however, 

this dimensionless parameter is not related to elasticity but to the ratio of characteristic flow 

and fluid shear rates. The latter is the shear rate in which viscosity starts to drop due to shear-

thinning. The physical interpretation of such a definition is that at higher Carreau numbers, the 

flow will be subjected to lower viscosities because the flow shear rates along the domain will 

be higher than that in which the viscosity starts to drop. If the Carreau number is high enough, 

the flow domain may be subjected to a viscosity equal to 𝜂∞. 

The result under analysis is the dimensionless pressure drop along the length L in Fig. 

1 shown in Eq. (12) 

𝑝 =
Δ𝑝

𝜌𝑈𝑚
2                                                                                                                 (12) 

 

2.3 RHEOLOGICAL PARAMETERS 

An extensive review was conducted to determine the rheological parameters used in 

previous studies with the Carreau fluid model for blood. Table 2 summarizes the main cases 

and their respective values.  

 

Table 2 – Reference Carreau parameters used for blood. 
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Authors 𝜂∗  n Hematocrit Temperature 

Cho and Kensey (1991) 16.2 3.313 0.3568 40% - 

Johnston et al. (2004) 16.2 3.313 0.3568 - - 

Molla and Paul (2012) 16.2 3.313 0.3568 - - 

Pereira et al. (2013) 14.3 3.313 0.3440 - - 

Pereira et al. (2013) 16.2 3.313 0.3568 - - 

Pereira et al. (2013) 7.1 25 0.2500 - - 

Karimi et al. (2014) 16.0 3.313 0.3568 40% - 

Fortuny et al. (2015) 16.2 3.313 0.3568 - - 

Doost et al. (2016) 16.0 3.313 0.3568 - - 

Iasiello et al. (2017) 16.2 3.313 0.3568 - - 

Mehri et al. (2018) 16.8 3.313 0.3530 5% 23°C 

Mehri et al. (2018) 56.2 3.312 0.3690 10% 23°C 

Mehri et al. (2018) 11.5 3.313 0.3520 5% 37°C 

Mehri et al. (2018) 51.6 3.312 0.3620 15% 23°C 

Mehri et al. (2018) 10.2 3.312 0.3530 10% 37°C 

Mehri et al. (2018) 16.2 3.313 0.3560 45% 37°C 

Mehri et al. (2018) 33.2 3.314 0.1520 15% 37°C 

 

An important point is that only a few studies in Table 2 reported the percentage of 

hematocrit and only the experimental work by Mehri et al. (2018) collected the influence of 

hematocrit and temperature on blood parameters. Based on the data of Table 2, the present study 

selected extrapolated parameters for blood beyond the references in order to assess the effect 

of extreme behaviors on geometry performance and to verify the influence of each individual 

parameter in the Constructal Design. The extrapolated parameters are shown in Table 3. 

 

Table 3 – Range of rheological parameters of the Carreau blood model. 

Parameters Values 

𝜂∗ 15 – 1000 

 3 – 50  

n 0.35 – 0.60 

2.4 NUMERICAL METHOD AND COMPUTATIONAL GRID 

The present work applied the same numerical model and settings adopted in the previous 

work of Dutra et al. (2020), which employed the Finite Volume Method of Patankar (1980) in 

ANSYS/FLUENT v. 18.2 (ANSYS, 2015). The pressure-based solver with the pressure-

velocity coupling method was employed, using second-order interpolation functions for 

pressure and velocity. All calculations were done using a double precision representation of 

real numbers. The iterative algorithm was a false transient. As a convergence criterion, the 
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scaled residuals of each equation at each iteration were compared with a user-defined 

convergence criterion equal to 10-6. If the residual for each equation was less than the user-

specified value, that equation was deemed to have converged for a time step. (ANSYS, 2015). 

The mesh was parameterized to keep the element sizes proportional to the diameter ratio 

studied. Depending on the configuration, a total of 500,000 to 950,000 tetrahedral finite 

elements were necessary to mesh the computational domain accurately. Along the walls, 

prismatic layers elements were used to better capture the boundary layer. Figure 3 presents a 

sample of the computational mesh for the model with detailed views.  

 

 

Figure 3 – Isometric view of the computational mesh for the model (a) with a view at the 

cross-section in the bypass and artery (b) and a front mesh view of the bypass (c) and stenosis 

region (d). 

In a Dutra et al. (2020), a verification study was performed for this model. The Grid 

Convergence Index (GCI) method was applied for different values of junction angle (𝛼) and 

diameter ratio (D1/D) in three different values of stenosis degree (S = 25%, 50%, and 75%). 

Table 4 presents a comparison between the two higher GCI found for Newtonian blood and the 

respective GCI values for non-Newtonian blood in the same bypass configuration with N 

representing the number of elements. Thus, it can be verified that the maximum GCI for the 

non-Newtonian case is 1.14% when refining the mesh in the same factor of 15% to 30%. It is 

important to observe that a maximum GCI value of 5% is considered acceptable for this method 

(CELIK et al., 2008). 

 

Table 4 – Grid Convergence Index (GCI) comparison for the Newtonian and non-Newtonian 

cases in the same bypass configurations at Re = 250. 

  
Newtonian 

Case 1 

non-

Newtonian 

Case 1 

Newtonian 

Case 2 

non-

Newtonian 

Case 2 

D1/D 1 1 1 1 

α 70° 70° 70° 70° 

S 25% 25% 75% 75% 

µ 0.0035 - 0.0035 - 
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𝜂∗ - 15 - 15 

 - 3 - 3 

n - 0.35 - 0.35 

N1 510,872 510,872 803,049 803,049 

N2 434,428 434,428 651,633 651,633 

N3 368,760 368,760 490,328 490,328 

𝑝,𝑁1 2.362 2.641 3.924 4.107 

𝑝,𝑁2 2.415 2.601 3.928 4.097 

𝑝,𝑁3 2.437 2.598 3.929 4.036 

GCI 1.82% 1.14% 1.66% 1.12% 

 

The response surface methodology available in ANSYS Design Xplorer 18.2 (ANSYS, 

2016) was applied to investigate the effects of 𝛼 and D1/D on pressure drop along the length L. 

A sparse grid method (MONTGOMERY, 2013) was adopted to build the response surfaces and 

represent 𝑝 as a function of the degrees of freedom D1/D and 𝛼. Sparse Grid is an adaptive 

model driven by the accuracy defined by the user. Initially, the program calculated four design 

points located at the edges and one design point located at the center of the response surface. 

Then, the response surface was elaborated with a maximum number of 1,000 design points per 

surface. It is noteworthy that each design point represented a specific bypass configuration 

within the ranges 0.1 ≤ D1/D ≤ 1.0 and 30º ≤ 𝛼 ≤ 70º. In this study, the number of points needed 

to construct each surface ranged from 200 to 300. 

 

3 RESULTS AND DISCUSSION 

3.1 RESPONSE SURFACES 

Eighteen response surfaces were generated by the sparse grid method 

(MONTGOMERY, 2013).  Figure 4 presents a comparison between two samples of response 

surfaces that represent 𝑝 as a function of D1/D and 𝛼. Figure 4(a) represents the Newtonian case 

(µ = 0.0035 Pa.s / 𝜂∗ = 1) while Fig. 4(b) exhibits the non-Newtonian baseline case (𝜂∗ = 15;  

= 3; n = 0.35). Both response surfaces represent the results of stenosis degree S of 75% at a 

Reynolds number of 150. 
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Figure 4 – Response surfaces representing 𝑝 as a function of D1/D and 𝛼 for the stenosis 

degree equal to 75% and Reynolds number equal to 150: (a) Newtonian case (µ = 0.0035 

Pa.s); (b) non-Newtonian baseline case (𝜂∗ = 15;  = 3; n = 0.35). 

 

Following the same trend of Fig. 4, a high similarity was seen in all the response surfaces 

generated for the Newtonian and non-Newtonian cases. In Fig. 4, it is possible to observe that 

both response surfaces had a specific optimal combination point of D1/D and 𝛼 that minimized 

the dimensionless pressure drop (𝑝). In all situations 𝑝 decreased as the aspect ratio D1/D 

increased to 1 and the junction angle 𝛼 decreased to 30º. As the flow was highly deviated 

through the bypass, the influence of 𝛼 in  𝑝  became almost unnoticeable. 

Tables 5 and 6 summarize the optimal geometry results for the eighteen configurations. 

The parameter  is represented in the table by the Carreau number (̃) which varies the value 

of  in the viscosity function (ZINANI and FREY, 2008). It is possible to notice a considerable 

dependence of 𝑝 on rheological parameters, especially 𝜂∗ and n. Also, the optimum point for 

all cases was a D1/D,opt ratio equal to 1 and 𝛼,opt equal to 30°. 

Table 5 – Optimum results for stenosis degree equal to 75%, at Re equal to 150. 

Re Case µ *          ̃ n 𝑝,min D1/D,opt α,opt 

 Newtonian 0.0035 1 - - - 3.978 1 30° 

 Non-Newtonian - 15 3 175 0.35 4.472 1 30° 

 Non-Newtonian - 15 3 175 0.60 6.750 1 30° 

 Non-Newtonian - 15 50 2916.7 0.35 4.054 1 30° 

150 Non-Newtonian - 15 50 2916.7 0.60 4.853 1 30° 

 Non-Newtonian - 1000 3 175 0.35 38.237 1 30° 

 Non-Newtonian - 1000 3 175 0.60 207.53 1 30° 

 Non-Newtonian - 1000 50 2916.7 0.35 9.517 1 30° 

 Non-Newtonian - 1000 50 2916.7 0.60 69.217 1 30° 
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Table 6 – Optimum results for stenosis degree equal to 75%, at Re equal to 250. 

Re Case µ *          ̃ n 𝑝,min D1/D,opt α,opt 

 Newtonian 0.0035 1 - - - 2.659 1 30° 

 Non-Newtonian - 15 3 291.7 0.35 2.866 1 30° 

 Non-Newtonian - 15 3 291.7 0.60 3.992 1 30° 

 Non-Newtonian - 15 50 4861.1 0.35 2.710 1 30° 

250 Non-Newtonian - 15 50 4861.1 0.60 3.091 1 30° 

 Non-Newtonian - 1000 3 291.7 0.35 17.621 1 30° 

 Non-Newtonian - 1000 3 291.7 0.60 103.93 1 30° 

 Non-Newtonian - 1000 50 4861.1 0.35 5.238 1 30° 

 Non-Newtonian - 1000 50 4861.1 0.60 35.444 1 30° 

 

For the two Reynolds numbers studied, the Newtonian case resulted in the lowest value 

of the dimensionless pressure drop. This finding suggests that the choice of assuming 

Newtonian behavior to blood may underestimate the value of pressure drop in the system. For 

the Newtonian case (µ = 0.0035 Pa.s) and the non-Newtonian baseline case (𝜂∗ = 15;   = 3; n 

= 0.35) of this study, the underestimation was of about 12.4% for Re = 150 and 7.8% for Re = 

250. Weddell et al. (2015) reached the same result in a pulsating study of an artery tree, where 

the Newtonian pressure drop found was lower than the non-Newtonian one. However, the 

differences in Weddell et al. (2015) ranged from 31% to 133% depending on the time lapse 

analyzed. The difference with respect to this study can be explained by the geometry analyzed 

and flow regime adopted. 

Even so, the results obtained demonstrated that non-Newtonian rheological parameters 

influenced neither the shape of the response surfaces nor the optimum points found. In the 

previous study of Dutra et al. (2020), the same optimum point was found for different stenosis 

degrees (S) equal to 25%, 50%, and 75% at three different Reynolds numbers. Likewise, these 

discoveries were in line with the work of Abraham et al. (2005), who verified no significant 

differences in the optimal junction angle obtained using Newtonian and non-Newtonian 

models. More recently, Vimmr et al. (2013) suggested that the bypass diameter was a more 

important parameter than the application of a non-Newtonian model. Furthermore, it was 

asserted that the diameter was the main determinant parameter for the patency and overall 

performance of a bypass graft. 
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3.2 VELOCITY FIELDS AND STREAMLINES 

Velocity field data are presented in Fig. 5 for the optimum junction angle (𝛼,opt = 30°) 

and diameter ratio (D1/D,opt = 1) shown in Table 5 at Re = 150 and S = 75%. The Newtonian 

case and four specific non-Newtonian cases are shown with the main focus on the effect 

provided by the variation of rheological parameters.  

 

 
Figure 5 – Effect provided by the variation of rheological parameters in the optimum junction 

angle, 𝛼,opt = 30° and diameter ratio, D1/D,opt = 1, at velocity contours for stenosis degree, S = 

75% and Re = 150. Newtonian case (a) µ = 0.0035 Pa.s; and non-Newtonian cases (b) 𝜂∗=15; 

=3; n=0.35; (c) 𝜂∗=15; =50; n=0.35; (d) 𝜂∗=15; =3; n=0.60; (e) 𝜂∗=1000; =3; n=0.35. 

 

In general, the first three bypasses of Fig. 5(a-c) present a similar velocity field, while 

the last two of Fig. 5(d-e) differ from the others. This velocity field behavior can be explained 

by the variation of the blood rheological parameters 𝜂∗ and n, which appears to have a more 

pronounced influence on the velocity field than . The most significant change in flow can be 

noted for the highest 𝜂∗ value of Fig. 5(e). This is explained by the greater drop in viscosity that 

occurred in this case between the 𝜂0 and 𝜂∞ plateaus. For lower 𝜂∗ values, as are the cases of 

Fig. 5(a-d), the drop in viscosity does not cause noticeable changes in the flow.  

Also, it is possible to assert that, by decreasing the bypass diameter, the non-Newtonian 

effects on the flow could become more relevant because the shear rate would increase with the 

reduction in diameter and cause a drop in blood viscosity. Nonetheless, as demonstrated in the 

previous study of Dutra et al. (2020), smaller diameters caused a higher pressure drop, which 

was not desired for the bypass performance. 
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Besides, with the variation of blood parameters, it is possible to note different flow zones 

in the region upstream of stenosis (𝑥̃ = -2 to 0) of Fig. 5. Other changes occur in the stenosis 

region (𝑥̃ = 0), where the shear-thinning characteristics of blood affect the jet flow. It is 

noteworthy that this phenomenon occurs due to the increase in the shear stress caused by the 

sudden reduction in the diameter of the artery (stenosis). Sood et al. (2018) analyzed the 

complexity of these patterns in non-Newtonian blood flow through axisymmetric and 

asymmetric stenosis and in the post stenotic region. However, the role of this phenomenon as a 

pathological determinant is still debatable (ANDERSSON et al., 2019). 

Streamlines were generated to visualize the differences in the regions upstream (𝑥̃ = -2 

to 0) and downstream (𝑥̃ = 0 to 2) of stenosis. Results are shown in Fig. 6 under the same flow 

configurations. 

 

 
Figure 6 – Effect provided by the variation of rheological parameters in the optimum junction 

angle, 𝛼,opt = 30° and diameter ratio, D1/D,opt = 1, at streamlines for stenosis degree, S = 75% 

and Re = 150. Newtonian case (a) µ = 0.0035 Pa s; and non-Newtonian cases (b) 𝜂∗=15; =3; 

n=0.35; (c) 𝜂∗=15; =50; n=0.35; (d) 𝜂∗=15; =3; n=0.60; (e) 𝜂∗=1000; =3; n=0.35. 

 

Figure 6(a-e) highlights that larger recirculation zones appear in all bypasses in the 

region upstream of stenosis, while only Fig. 6(b-c) presents this phenomenon downstream of 

stenosis. As previously shown in Fig. 5(d-e), these last two cases differ from the others due to 

the variation of rheological parameters and shear-thinning effects. Vimmr and Jonášová (2010) 

also observed differences in velocity distribution and profile. 

The appearance of recirculation zones is especially important downstream of stenosis, 

where the occurrence of intimal hyperplasia is known to be more prevalent. This finding 
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demonstrates the importance of choosing a non-Newtonian fluid model for blood because the 

choice of a Newtonian model may underestimate this phenomenon. This situation was already 

well reported by several studies. Bertolotti et al. (2001), Lee et al. (2001) and Ko et al. (2007) 

observed the same recirculation zones in the regions upstream and downstream of stenosis and 

concluded that these zones were two critical locations where the blood cells could be damaged 

and tended to accumulate. Thus, these studies demonstrated the influence of recirculation zones 

on bypass failure.  Chen et al. (2006) concluded that a Newtonian model for blood might lead 

to false conclusions, especially in complex vascular geometries. O´Callaghan et al. (2006) 

stated that blood could not be treated as a Newtonian or non-Newtonian fluid in general and 

under all situations. Instead, it was considered more useful to consider each case individually 

depending on which configuration was investigated. Vimmr and Jonášová (2010) studied a 

femoral bypass and observed several underestimated recirculation zones, especially before the 

occlusion, and indicated that blood non-Newtonian behavior was particularly evident in the post 

stenotic region. 

As cited from other studies, non-uniform hemodynamics is well recognized for 

contributing to restenosis and the blood cells accumulation. So, the findings of this study 

demonstrate the importance of choosing a non-Newtonian fluid model for blood because the 

choice of a Newtonian model may underestimate the recirculation phenomenon. 

3.3 WALL SHEAR STRESS (WSS) 

The shear stress behavior at the artery wall caused by the variation of rheological 

parameters of the blood was analyzed at Re of 150 and stenosis degree S of 75%. The shear 

stress found at each point was normalized by the shear stress found in the fully developed 

condition of the artery. Figures 7 through 9 present the results of WSS at lines located along 

the artery wall as depicted in Fig. 1(b-c), namely inner, outer, and side wall lines. Along the 

three wall lines, it was possible to observe that higher normalized WSS values were obtained 

in the constricted area (𝑥̃ = 0) for the Newtonian case (µ = 0.0035 Pa.s) and the non-Newtonian 

baseline case (𝜂∗ = 15;   = 3; n = 0.35). A less representative increase in normalized WSS 

occurred in the same region for other non-Newtonian configurations.  

Figure 7 shows that along the inner wall the Newtonian case (µ = 0.0035 Pa.s) and the 

non-Newtonian baseline case (𝜂∗ = 15;   = 3; n = 0.35) induced higher normalized WSS values 

at the bypass entrance (𝑥̃ = -2 to -1) and toe region (𝑥̃ = 3 to 4). Also, in agreement with the 

results of Section 3.2, it is important to point out the presence of negative values of WSS in the 
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recirculation zones near stenosis (𝑥̃ = -1 to 0 and 𝑥̃ = 0 to 1). Chen et al. (2006) also observed 

flow recirculation in the post stenotic region near the inner wall and higher values of WSS in 

all cases near the heel.                             

 

 
Figure 7 – Results of normalized shear stress, *, on the inner wall provided by the variation 

of rheological parameters in the optimum junction angle, 𝛼,opt = 30° and diameter ratio, 

D1/D,opt = 1, for stenosis degree, S = 75% and Re = 150. Newtonian case (a) µ = 0.0035 Pa.s; 

and non-Newtonian cases (b) 𝜂∗=15; =3; n=0.35; (c) 𝜂∗=15; =50; n=0.35; (d) 𝜂∗=15; =3; 

n=0.60; (e) 𝜂∗=1000; =3; n=0.35. 
 

 

At the outer wall (Fig. 8) and sidewall (Fig. 9), a high similarity between Newtonian 

and non-Newtonian results is observed. In both cases, the most remarkable occurrence is the 

presence of negative values of WSS in the recirculation zones near stenosis (𝑥̃ = -1 to 0 and 𝑥̃ = 

0 to 1) and a shear stress peak in the artery bed (𝑥̃ = 3 to 4). It is important to observe that the 

results for the Newtonian and three non-Newtonian cases have similar behavior, except for the 

non-Newtonian case with higher 𝜂∗ = 1000 of Fig. 8(e) and 9(e). These are also explained by 

the higher drop in the viscosity curve that occurred between the 𝜂0 plateau and the 𝜂∞ plateau. 

Vimmr et al. (2013) asserted that the most significant changes in WSS were very specific and 

observed mainly in the upstream stenosis region, i.e., in unimportant areas to the intimal 

hyperplasia occurrence. 

It is noteworthy that the WSS values shown in Fig. 7 through 9 have been normalized 

by the shear stress found in the fully developed condition in the artery. This procedure meant 

that the nominal WSS values for each case were quantitatively very different, especially for 

higher 𝜂∗ values. In this point of view, O´Callaghan et al. (2006) stated that the results between 

Newtonian and non-Newtonian blood were qualitatively but not quantitatively similar and this 

situation should be considered when different works are compared.  
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Finally, it is important to emphasize that the major differences in WSS appeared only in 

the extrapolated values, i.e., on the non-Newtonian case with higher 𝜂∗ = 1000. As already 

pointed out in Section 2.3 these values were adopted in order to assess if extreme behaviour 

could have important effects on geometry performance. Thus, it can be assumed that the 

adoption of a non-Newtonian model for blood does not significantly alter the WSS values in 

the study of a bypass graft 

 

 
Figure 8 – Results of normalized shear stress, *, on the outer wall provided by the variation 

of rheological parameters in the optimum junction angle, 𝛼,opt = 30° and diameter ratio, 

D1/D,opt = 1, for stenosis degree, S = 75% and Re = 150. Newtonian case (a) µ = 0.0035 Pa.s; 

and non-Newtonian cases (b) 𝜂∗=15; =3; n=0.35; (c) 𝜂∗=15; =50; n=0.35; (d) 𝜂∗=15; =3; 

n=0.60; (e) 𝜂∗=1000; =3; n=0.35. 

 

 
Figure 9 – Results of normalized shear stress, *, on sidewall provided by the variation of 

rheological parameters in the optimum junction angle, 𝛼,opt = 30° and diameter ratio, D1/D,opt 

= 1, for stenosis degree, S = 75% and Re = 150. Newtonian case (a) µ = 0.0035 Pa.s; and non-

Newtonian cases (b) 𝜂∗=15; =3; n=0.35; (c) 𝜂∗=15; =50; n=0.35; (d) 𝜂∗=15; =3; n=0.60; 

(e) 𝜂∗=1000; =3; n=0.35. 
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4 CONCLUSIONS 

In this work, the effects of rheological parameters in different blood flow conditions of 

a bypass graft were investigated. A CFD model associated with Constructal Design and Sparse 

Grid method generated eighteen response surfaces, each one representing results for a severe 

stenosis degree of 75% for specific combinations of Carreau rheological parameters at two 

different Reynolds numbers of 150 and 250. The Newtonian and non-Newtonian outcomes 

were compared through an analysis of the influence of each rheological parameter of the 

Carreau model. 

All the response surfaces generated for Newtonian and non-Newtonian cases presented 

a significant similarity, i.e., the dimensionless pressure drop (𝑝) was minimized for D1/D equal 

to 1 and 𝛼 equal to 30º.  This was in agreement with the previous study of Dutra et al. (2020) 

which determined the same optimal geometry for three different stenosis degrees S (25%, 50%, 

and 75%) at three different Reynolds Numbers (150, 250 and 400). However, in the present 

study, the dimensionless pressure drop was strongly dependent on rheological parameters. For 

the two Reynolds numbers studied, the Newtonian case presented the lowest value of the 

dimensionless pressure drop, which suggested that the choice of applying Newtonian blood 

may underestimate the value of pressure drop in the system. Even so, the results demonstrated 

that rheological parameters influenced neither the shape of the response surfaces nor the optimal 

geometry.  

The effects of rheological parameters on velocity fields and wall shear stress (WSS) 

were also investigated. Parameters 𝜂∗ and n had more pronounced influences on velocity, 

streamlines and recirculation zones than . Rheological parameters also resulted in the 

occurrence of recirculation zones, especially downstream of stenosis, where the occurrence of 

intimal hyperplasia is known to be more prevalent. On WSS, it should be stressed that the results 

for the Newtonian and most non-Newtonian cases had similar behavior, the exception being the 

non-Newtonian case with higher 𝜂∗ value which was explained by the more significant drop in 

viscosity curve that occurred in this case. 

At this point, some limitations of this study should be mentioned. First of all, a steady-

state condition was applied while blood flow is known to be pulsating. Moreover, the grafts and 

arteries were assumed as rigid walls and idealized without considering a patient-specific 

vascular model. Also, there are limited experimental data available in reference studies that are 

essential for validation and clinical adoption of any proposed configuration. Despite these 
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simplifications and assumptions, by applying the Constructal Design methodology, the main 

conclusions and the optimal graft design found in this paper agree with previous Newtonian 

and non-Newtonian studies that evaluated graft design with the same and other methodologies. 
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