117 research outputs found

    The role of APT imaging in gliomas grading: A systematic review and meta-analysis

    Get PDF
    Purpose: Gliomas are diagnosed and staged by conventional MRI. Although non-conventional sequences such as perfusion-weighted MRI may differentiate low-grade from high-grade gliomas, they are not reliable enough yet. The latter is of paramount importance for patient management. In this regard, we aim to evaluate the role of Amide Proton Transfer (APT) imaging in grading gliomas as a non-invasive tool to provide reliable differentiation across tumour grades. Methods: A systematic search of PubMed, Medline and Embase was conducted to identify relevant publications between 01/01/2008 and 15/09/2020. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to assess studies’ quality. A random-effects model standardized mean difference meta-analysis was performed to assess APT's ability to differentiate low-grade gliomas (LGGs) from high-grade gliomas (HGGs), WHO 2–4 grades, wild-type from mutated isocitrate dehydrogenase (IDH) gliomas, methylated from unmethylated O6-methylguanine-DNA methyltransferase (MGMT) gliomas. Area under the curve (AUC) of the Receiver Operating Characteristic (ROC) meta-analysis was employed to assess the diagnostic performance of APT. Results: 23 manuscripts met the inclusion criteria and reported the use of APT to differentiate glioma grades with histopathology as reference standard. APT-weighted signal intensity can differentiate LGGs from HGGs with an estimated size effect of (-1.61 standard deviations (SDs), p < 0.0001), grade 2 from grade 3 (-1.83 SDs, p = 0.005), grade 2 from grade 4 (-2.34 SDs, p < 0.0001) and IDH wild-type from IDH mutated (0.94 SDs, p = 0.003) gliomas. The combined AUC of 0.84 highlights the good diagnostic performance of APT-weighted imaging in differentiating LGGs from HGGs. Conclusions: APT imaging is an exciting prospect in differentiating LGGs from HGGs and with potential to predict the histopathological grade. However, more studies are required to optimize and improve its reliability

    The role of DSC MR perfusion in predicting IDH mutation and 1p19q codeletion status in gliomas: meta-analysis and technical considerations

    Get PDF
    Purpose: Isocitrate dehydrogenase (IDH) mutation and 1p19q codeletion status are important for managing glioma patients. However, current practice dictates invasive tissue sampling for histomolecular classification. We investigated the current value of dynamic susceptibility contrast (DSC) MR perfusion imaging as a tool for the non-invasive identification of these biomarkers. Methods: A systematic search of PubMed, Medline, and Embase up to 2023 was performed, and meta-analyses were conducted. We removed studies employing machine learning models or using multiparametric imaging. We used random-effects standardized mean difference (SMD) and bivariate sensitivity-specificity meta-analyses, calculated the area under the hierarchical summary receiver operating characteristic curve (AUC) and performed meta-regressions using technical acquisition parameters (e.g., time to echo [TE], repetition time [TR]) as moderators to explore sources of heterogeneity. For all estimates, 95% confidence intervals (CIs) are provided. Results: Sixteen eligible manuscripts comprising 1819 patients were included in the quantitative analyses. IDH mutant (IDHm) gliomas had lower rCBV values compared to their wild-type (IDHwt) counterparts. The highest SMD was observed for rCBVmean, rCBVmax, and rCBV 75th percentile (SMD≈ − 0.8, 95% CI ≈ [− 1.2, − 0.5]). In meta-regression, shorter TEs, shorter TRs, and smaller slice thicknesses were linked to higher absolute SMDs. When discriminating IDHm from IDHwt, the highest pooled specificity was observed for rCBVmean (82% [72, 89]), and the highest pooled sensitivity (i.e., 92% [86, 93]) and AUC (i.e., 0.91) for rCBV 10th percentile. In the bivariate meta-regression, shorter TEs and smaller slice gaps were linked to higher pooled sensitivities. In IDHm, 1p19q codeletion was associated with higher rCBVmean (SMD = 0.9 [0.2, 1.5]) and rCBV 90th percentile (SMD = 0.9 [0.1, 1.7]) values. Conclusions: Identification of vascular signatures predictive of IDH and 1p19q status is a novel promising application of DSC perfusion. Standardization of acquisition protocols and post-processing of DSC perfusion maps are warranted before widespread use in clinical practice

    Dynamic contrast-enhanced MRI in malignant pleural mesothelioma : prediction of outcome based on DCE-MRI measurements in patients undergoing cytotoxic chemotherapy

    Get PDF
    The malignant pleural mesothelioma (MPM) response rate to chemotherapy is low. The identification of imaging biomarkers that could help guide the most effective therapy approach for individual patients is highly desirable. Our aim was to investigate the dynamic contrast-enhanced (DCE) MR parameters as predictors for progression-free (PFS) and overall survival (OS) in patients with MPM treated with cisplatin-based chemotherapy. Methods: Thirty-two consecutive patients with MPM were enrolled in this prospective study. Pretreatment and intratreatment DCE-MRI were scheduled in each patient. The DCE parameters were analyzed using the extended Tofts (ET) and the adiabatic approximation tissue homogeneity (AATH) model. Comparison analysis, logistic regression and ROC analysis were used to identify the predictors for the patient\u27s outcome. Results: Patients with higher pretreatment ET and AATH-calculated Ktrans and ve values had longer OS (P≤.006). Patients with a more prominent reduction in ET-calculated Ktrans and kep values during the early phase of chemotherapy had longer PFS (P =.008). No parameter was identified to predict PFS. Pre-treatment ET-calculated Ktrans was found to be an independent predictive marker for longer OS (P=.02) demonstrating the most favourable discrimination performance compared to other DCE parameters with an estimated sensitivity of 89% and specificity of 78% (AUC 0.9, 95% CI 0.74-0.98, cut off > 0.08 min-1). Conclusions: In the present study, higher pre-treatment ET-calculated Ktrans values were associated with longer OS. The results suggest that DCE-MRI might provide additional information for identifying MPM patients that may respond to chemotherapy

    Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis

    Get PDF
    Purpose: Autism Spectrum Disorder (ASD) is diagnosed through observation or interview assessments, which is time-consuming, subjective, and with questionable validity and reliability. Thus, we aimed to evaluate the role of machine learning (ML) with neuroimaging data to provide a reliable classification of ASD. Methods: A systematic search of PubMed, Scopus, and Embase was conducted to identify relevant publications. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to assess the studies’ quality. A bivariate random-effects model meta-analysis was employed to evaluate the pooled sensitivity, the pooled specificity, and the diagnostic performance through the hierarchical summary receiver operating characteristic (HSROC) curve of ML with neuroimaging data in classifying ASD. Meta-regression was also performed. Results: Forty-four studies (5697 ASD and 6013 typically developing individuals [TD] in total) were included in the quantitative analysis. The pooled sensitivity for differentiating ASD from TD individuals was 86.25 95% confidence interval [CI] (81.24, 90.08), while the pooled specificity was 83.31 95% CI (78.12, 87.48) with a combined area under the HSROC (AUC) of 0.889. Higgins I2 (> 90%) and Cochran’s Q (p < 0.0001) suggest a high degree of heterogeneity. In the bivariate model meta-regression, a higher pooled specificity was observed in studies not using a brain atlas (90.91 95% CI [80.67, 96.00], p = 0.032). In addition, a greater pooled sensitivity was seen in studies recruiting both males and females (89.04 95% CI [83.84, 92.72], p = 0.021), and combining imaging modalities (94.12 95% [85.43, 97.76], p = 0.036). Conclusion: ML with neuroimaging data is an exciting prospect in detecting individuals with ASD but further studies are required to improve its reliability for usage in clinical practice

    Feasibility of simultaneous PET/MR imaging in the head and upper neck area

    Get PDF
    Objective: The aim of this pilot study was to test and demonstrate the feasibility of simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) of the head and upper neck area using a new hybrid PET/MRI system. Methods: Eight patients with malignant head and neck tumours were included in the pilot study. Directly after routine PET/CT imaging with a whole-body system using the glucose derivative 2-[18F]fluoro-2deoxy-D-glucose (FDG) as a radiotracer additional measurements were performed with a prototype PET/MRI system for simultaneous PET and MR imaging. Physiological radiotracer uptake within regular anatomical structures as well as tumour uptake were evaluated visually and semiquantitatively (metabolic ratios) in relation to cerebellar uptake on the PET/MRI and PET/CT systems. Results: The MR datasets showed excellent image quality without any recognisable artefacts caused by the inserted PET system. PET images obtained with the PET/MRI system exhibited better detailed resolution and greater image contrast in comparison to those from the PET/CT system. An excellent agreement between metabolic ratios obtained with both PET systems was found: R = 0.99 for structures with physiological tracer uptake, R = 0.96 for tumours. Conclusion: Simultaneous PET/MRI of the head and upper neck area is feasible with the new hybrid PET/MRI prototyp

    Investigating the value of radiomics stemming from DSC quantitative biomarkers in IDH mutation prediction in gliomas

    Get PDF
    ObjectiveThis study aims to assess the value of biomarker based radiomics to predict IDH mutation in gliomas. The patient cohort consists of 160 patients histopathologicaly proven of primary glioma (WHO grades 2–4) from 3 different centers.MethodsTo quantify the DSC perfusion signal two different mathematical modeling methods were used (Gamma fitting, leakage correction algorithms) considering the assumptions about the compartments contributing in the blood flow between the extra- and intra vascular space.ResultsThe Mean slope of increase (MSI) and the K1 parameter of the bidirectional exchange model exhibited the highest performance with (ACC 74.3% AUROC 74.2%) and (ACC 75% AUROC 70.5%) respectively.ConclusionThe proposed framework on DSC-MRI radiogenomics in gliomas has the potential of becoming a reliable diagnostic support tool exploiting the mathematical modeling of the DSC signal to characterize IDH mutation status through a more reproducible and standardized signal analysis scheme for facilitating clinical translation
    corecore