
TYPE Original Research

PUBLISHED 16 November 2023

DOI 10.3389/fneur.2023.1249452

OPEN ACCESS

EDITED BY

Timothy Carroll,

The University of Chicago, United States

REVIEWED BY

Xiaojing Wang,

Shanghai Jiao Tong University, China

Parmede Vakil,

Northwestern University, United States

*CORRESPONDENCE

Georgios S. Ioannidis

geo3721@ics.forth.gr

†These authors share first authorship
‡These authors share last authorship

RECEIVED 28 June 2023

ACCEPTED 31 October 2023

PUBLISHED 16 November 2023

CITATION

Ioannidis GS, Pigott LE, Iv M, Surlan-Popovic K,

Wintermark M, Bisdas S and Marias K (2023)

Investigating the value of radiomics stemming

from DSC quantitative biomarkers in IDH

mutation prediction in gliomas.

Front. Neurol. 14:1249452.

doi: 10.3389/fneur.2023.1249452

COPYRIGHT

© 2023 Ioannidis, Pigott, Iv, Surlan-Popovic,

Wintermark, Bisdas and Marias. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Investigating the value of
radiomics stemming from DSC
quantitative biomarkers in IDH
mutation prediction in gliomas

Georgios S. Ioannidis1*†, Laura Elin Pigott2,3,4†, Michael Iv5,

Katarina Surlan-Popovic6,7, Max Wintermark5, Sotirios Bisdas8,9‡

and Kostas Marias1,10‡

1Computational BioMedicine Laboratory (CBML), Institute of Computer Science, Foundation for

Research and Technology—Hellas (FORTH), Heraklion, Greece, 2Institute of Health and Social Care,

London South Bank University, London, United Kingdom, 3Faculty of Brain Science, Queen Square

Institute of Neurology, University College London, London, United Kingdom, 4Lysholm Department of

Neuroradiology, The National Hospital for Neurology and Neurosurgery University College London,

London, United Kingdom, 5Department of Radiology, Division of Neuroimaging and Neurointervention,

Stanford University, Stanford, CA, United States, 6Department of Radiology, Faculty of Medicine,

University of Ljubljana, Ljubljana, Slovenia, 7Department of Neuroradiology, University Medical Centre,

Ljubljana, Slovenia, 8Department of Brain Repair and Rehabilitation, Queen Square Institute of

Neurology, UCL, London, United Kingdom, 9Department of Neuroradiology, The National Hospital for

Neurology and Neurosurgery, University College London NHS Foundation Trust, London,

United Kingdom, 10Department of Electrical and Computer Engineering, Hellenic Mediterranean

University, Heraklion, Greece

Objective: This study aims to assess the value of biomarker based radiomics

to predict IDH mutation in gliomas. The patient cohort consists of 160

patients histopathologicaly proven of primary glioma (WHO grades 2–4) from 3

di�erent centers.

Methods: To quantify the DSC perfusion signal two di�erent mathematical

modeling methods were used (Gamma fitting, leakage correction algorithms)

considering the assumptions about the compartments contributing in the blood

flow between the extra- and intra vascular space.

Results:TheMean slope of increase (MSI) and the K1 parameter of the bidirectional

exchange model exhibited the highest performance with (ACC 74.3% AUROC

74.2%) and (ACC 75% AUROC 70.5%) respectively.

Conclusion: The proposed framework on DSC-MRI radiogenomics in gliomas

has the potential of becoming a reliable diagnostic support tool exploiting

the mathematical modeling of the DSC signal to characterize IDH mutation

status through a more reproducible and standardized signal analysis scheme for

facilitating clinical translation.

KEYWORDS

dynamic susceptibility contrast MRI, gliomas, radiogenomics, IDH mutation,

generalizability, explainability

1 Introduction

Gliomas are the most frequent type of brain tumors, which are classified with a grading

system outlined by the WHO, ranging from Grade I to IV (1). Diagnosis and classification

of gliomas have, as of 2016, incorporated molecular markers, due to the correlation between

tumor biology and behavior (2). One of the most important genetic markers seen in gliomas

is the isocitrate dehydrogenase (IDH)mutation, which has long seen better patient prognosis

than patients with gliomas of an IDH wildtype (3, 4). This mutation is suspected to result in
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decreased NADPH production within the cell, thus exposing the

tumors cells to damage caused by reactive oxygen species (ROS).

Whereas, IDH wild-type tumors are more resistant to ROS, likely

due to the protection provided by NADPH, and therefore present

in a more aggressive form (5).

The identification of IDH mutations is therefore instrumental

in predicting patient prognosis, glioma surveillance (2), and

potentially treating cancer (6). However, the process of

distinguishing IDH mutations consists of invasive biopsies,

which are accompanied by limitations such as postoperative

complications and clerical or histological errors (7). Recent

AI advancement in imaging studies have given rise to a less

invasive process to identify potential molecular markers. This is

proposed by correlating imaging features, such as, radiological

enhancement of the tumor and calcification, with suspected

biomarkers, such as an IDH mutation (8, 9). However, although

this mechanism of biomarker identification is promising, it may

be inconsistent. To this end, there is a need for advancements in

machine learning and radiomics in order to provide a more robust

and systematic approach to identifying molecular markers and

therefore predicting survival outcomes and patient prognosis.

Dynamic Susceptibility Contrast (DSC) perfusion imaging,

specifically rCBV maps, can identify defined angiogenesis

transcriptome signatures, which could be indicative of IDHmutant

gliomas through the evident perfusion phenotypes (10). This

indicates that identifiable imaging biomarkers might be detectable

from the development of pathobiological tumor vasculature

(11), in addition to the imaging features previously mentioned,

with the use of multiparametric maps from DSC imaging.

However, limited evidence exists on the use of DSC perfusion

imaging in radiogenomic studies detecting IDH mutations from

glioma vasculature.

Artificial Intelligence is quickly becoming a field of research

which could potentially inform clinical decision making processes.

It uses radiological images as minable databases that utilize

quantitative data that can, once learned, predict clinically

relevant information (12). Machine Learning (ML) has been

shown to enhance the identification of IDH mutation statuses,

through extraction of quantitative data from conventional and

advanced magnetic resonance imaging (MRI) techniques using

multiparametric maps (13–24). Although these studies assessed the

value of machine learning using conventional and multiparametric

MRI to predict the presence of IDH mutations in gliomas, only a

few of them included multicentric data, which is imperative for a

standardized approach for implementation in a future healthcare

setting. This is an evident limitation in neuro-oncology radiomics

studies, since only 3.9% (2/51) of studies were validated with

multicentric data (25).

Therefore, and to the best of our knowledge, the use of DSC

perfusion imaging with machine learning to predict IDH mutation

status has only been investigated in four studies thus far (18, 21,

26, 27). However, only two publications have investigated the sole

use of DSC (18, 21). Promising results were reported in these two

studies, however, both studies note the heterogeneity of images

from different centers as a factor which could decrease sensitivity

and specificity.

The heterogeneity in MRI scanner characteristics, such as

software variations,MRI equipment (receiver coils), scan protocols,

and reconstruction algorithms, can lead to inter- and intra-site

variations. These variations affect the signal intensity of the MR

image, whichmay conceal the region of interest in terms of signal to

noise ratio (SNR) and lead to the failure of (ML) analysis (28). To

account for this heterogeneity, harmonization and normalization

techniques are applied to the data as a pre-processing step which is

not intuitive since there is variety of normalization choices that can

lead to different results. In addition, another limitation is the lack

of standardized radiomic pipelines and explainability mechanisms

to increase trustworthiness and accelerate clinical adoption.

This radiogenomics study aims to explore the value of

using machine learning (ML) directly on features from DSC

parametric maps, derived from mathematical signal modeling,

to predict IDH mutation status in gliomas. This methodology

is applied on a previously studied dataset (21) as a more

standardized and reproducible ML/Radiomics scheme without any

pre-processing step.

2 Materials and methods

2.1 Patient population

The patient cohort consisted of 160 patients [age: 58.4 ± 15.9

(mean ± SD), 70 female] from three different imaging centers.

Each patient underwent histopathological diagnosis of primary

glioma (WHO grades 2–4), molecular characterization of IDH

mutation status (IDH-mutant = 41, IDH-wildtype = 119) and

DSC–MRI prior to any treatment. The first cohort consisted of

92 patients (66 out of 92 IDH-mutant) from Stanford Medicine

Imaging Center, Stanford CA, USA. The second cohort included

50 patients (39 out of 50 IDH-mutant) from Health Lancaster

Imaging Center, South Carolina, USA. The third cohort contained

14 out of 18 patients with an IDH-mutant status from Ljubljana

University Medical Center, Ljubljana, Slovenia. Patients without a

histologically confirmed diagnosis of glioma, incomplete molecular

characterization of IDH status, non-enhancing grade III gliomas, or

patients having received any treatment prior to image acquisition

were excluded.

2.2 MRI protocol

The imaging parameters for each DSC acquisition for each

cohort are summarized in Table 1.

2.3 Tumor delineation

Bratumia software (https://www.nitrc.org/projects/bratumia)

(28), was used to delineate the regions of interest (ROIs). This

software uses as input four different MR contrasts (T1 before and

after contrast, T2, T2 FLAIR) in order to correctly identify tumor

enhancement, oedema and necrosis. As a next step three expert

neuroradiologists visually inspected the produced tumor ROIs and

proceeded to corrections when necessary. Finally, the whole tumor

ROI was selected as the combination of tumor enhancement,

oedema and necrotic regions.

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1249452
https://www.nitrc.org/projects/bratumia
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ioannidis et al. 10.3389/fneur.2023.1249452

TABLE 1 MR imaging parameters per cohort used.

First cohort Second cohort B Third cohort C

Scanner type 3T discovery MR750
(GE healthcare,
United States)

3T siemens skyra
(siemens

healthineers,
Erlangen, Germany)

1.5T magnetom
avanto (siemens
healthineers,

Erlangen, Germany)

1.5.T Philips Achieva
(philips medical

systems)

Acquisition type 2D Echo-Planar Imaging (EPI) with fat suppression (FS)

Magnetic field strength 3T 3T 1.5T 1.5T

Repetition time (ms) 1800 1870 1850 1525

Echo time (ms) 40 30 30 40

Echo train length 1 63 1 47

Flip angle (deg) 60 90 90 75

In-plane resolution (mm2) 1.718× 1.718 1.719× 1.719 1.796× 1.796 1.75× 1.75

Number of averages 1 1 1 1

Image slice thickness (mm) 5 5 5 5

Image slice spacing (mm) 5 5 5 5

Temporal resolution 60× 1.87 s 60× 2.07 s 40× 1.53s 60× 1.8s

Matrix size 128× 128 128× 128 128× 128 128× 128

2.4 Parametric map computation

2.4.1 Gamma fitting algorithm
DSC MRI and Computed Tomography perfusion (CTP) are

the most widely used tracer kinetic techniques to measure brain

perfusion. They both examine how the injected contrast agent is

distributed and diluted inside the vascular system (29). To quantify

the DSC signal we used an in-house software (30) developed in

Python 3.5 (www.python.org) mainly for CTP. The quantification

software was based on the work of Meier and Ziegler (31) and is

briefly described below.

Given a probability density function or transport function h(t)

that describes the transit of CA particles in the vascular system, the

equation that relates blood flow (Ft) with the concentration of CA

in the tissue Ct(t) is given by the formula below:

Ct (t) = Ft AIF ⊛ R (t) , (1)

where, AIF is the arterial input function, ⊛ is the convolution

operator and R (t) = 1 −
∫ t
0 h (τ ) dτ is the residue function

that denotes the amount of CA that is still present in the volume

of interest at time t (32). To account for dispersion effects (33)

the gamma variate function was chosen as the transport function

h(t) (34).

h (t) =

{

1
A1

(t − t1)
a1 e

−(t−t1)
σ1 , (t ≥ t1)

0, (t < t1)
(2)

where, A1 = σ
1+a1
1 Ŵ(1 + a1), Ŵ (a) is the Gamma probability

density function, a1, σ1 and t1 are related with themean transit time

and the dispersion of h (t ).

In order to obtain [Ft , t1, σ1, a1], the

(scipy.optimize.least_squares) (35) was used to fit Equation 1

to the DSC concentration curves (6) in a voxel by voxel basis.

Finally, by applying the central volume principle relative cerebral

blood flow (rCBF), blood volume (rCBV) and mean transit time

(rMTT) were calculated as

rCBF = Ft (3)

rMTT = t1 + σ1 (1+ a1) (4)

rCBV = rMTT ∗ Ft (central volume principle) (5)

In addition, the TMAX and the mean slope of increase (MSI)

were also calculated. TMAX represents the time taken for the DSC

curve to reach its maximum. Assuming Ct (t) to be the perfusion

curve and t0 the last time of the baseline, MSI was calculated as:

MSI =
1

N

tN = TMAX
∑

t1= t0

Ct (ti+1) − Ct (ti) (6)

It is also important to note that, the concentration of CA over

time [Ct (t)] for each voxel in a DSC series [S(t)] is assumed to

be proportional to the change of relaxation rate in the tissue as

expressed in Equation 1:

Ct (t) ∝ 1R∗2 (t) = −
1

TE
ln(

S(t)

S(0)
) (7)

where TE is the echo time and S(0) is the baseline signal prior to

the CA’s arrival. Thus, prior to fitting every DSC intensity curve was

converted to concentration of CA using Equation 7 (29).

2.4.2 Leakage correction algorithms
To determine the relative cerebral blood volume (nrCBV)

is a challenging task in brain tumors since a leaky blood-brain

barrier (BBB) can affect measurements (36). That said, lesions

with a disrupted BBB, permit CA leakage into the extravascular

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2023.1249452
http://www.python.org
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ioannidis et al. 10.3389/fneur.2023.1249452

FIGURE 1

Parametric maps calculated from the gamma fitting and the leakage correction algorithms superimposed to the corresponding anatomical image.

extracellular space (EES), reducing both T2∗ time further. Thus, a

more complex model must be taken into account to allow the uni-

or bi-directional exchange of CA between EES and intravascular

space (IVS). Thus, multi compartmental modeling is presented

below for the calculation of the corrected nrCBV (37).

In general, nrCBV is the integral of Ct (t) (Equation 7) between

the arrival t0 and the replenish t1time points as shown in Equation

8 below:

nrCBV =

∫ t1

t0

Ct (t) dt (8)

In the unidirectional leakage correction algorithm only the

transfer from IVS to EES is assumed and Ct (t) is modeled as a

linear combination of the whole brain average concentration Ct(t)

in non-enhancing voxels and its time integral in the next equation:

Ct (t) = K1 Ct(t)− K2

∫ t

0
Ct (τ )dτ (9)

where, K1 (sec−1) is a susceptibility scaling factor and K2 (sec−1)

is a permeability related parameter for intra- to extravascular

contrast flow. K1 and K2 are obtained by fitting equation 9 to the

concentration Ct (t) voxels over time inside the region of interest

(ROI). Thus, the unidirectional corrected time curve Ct unidir (t)

and nrCBVunidir can be computed for each voxel from the next

two equations:

Ct unidir (t) = Ct (t) + K2

∫ t

0
Ct (τ )dτ (10)

nrCBVunidir =

∫ t1

t0

Ct unidir (t) dt (11)

In the case of the bidirectional corrected algorithm the

bidirectional transfer between EES and IVS is assumed and Ct (t)

is modeled by adding an extra term in Equation 9 as follows:

Ct (t) = K1 Ct (t) − K2 Ct (τ ) ⊛ e−Kep (12)

where Kep is the transfer constant for extra- to intravascular

compartments and ⊛ is the convolution operator. Again, K1, K2

and Kep are obtained by fitting Equation 12 to the concentration

Ct (t) voxels over time inside the region of interest (ROI). Thus, the

bidirectional corrected time curve Ct bidir (t) and nrCBVbidir can be

computed for each voxel from the next two equations:

Ct bidir (t) = Ct (t) + K2 Ct (τ ) ⊛ e−Kep (13)

nrCBVbidir =

∫ t1

t0

Ct bidir (t) dt (14)

For the leakage corrected algorithms the search space for

the unknown fitted parameters K1, K2 and Kep was the

real numbers without any constrains with the Levenberg-

Marquardt algorithm (38) to account for T∗
2 leakage effects.

Some of the aforementioned parametric maps are depicted in

Figure 1.

2.5 Radiomic features

For each of the aforementioned parametric maps (rCBF, rCBV,

rMTT, MSI, TMAX and nrCBV, K1unidir, K2unidir, nrCBVunidir,

K1bidir, K2bidir, Kepbidir, nrCBVbidir) described in section 2.4

the pyradiomics library (39) was used to extract features based

on the annotations described in section 2.3. All the available

features classes from the pyradiomics library were incorporated

including: (a) statistical features such as first order statistics

and higher order statistics, (b) texture features such as Gray-

Level Run Length Matrix (GLRLM), Gray-Level Co-Occurrence
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Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM) and

Gray Level Difference Matrix (GLDM) and (c) shape-based 2D

and 3D features. Additionally, local binary patterns 2D (LBP)

and image transformation methods such as Laplace of Gaussian

(LoG), Logarithmic, Exponential, and Gradient were used leading

to 1,734 features.

2.6 Feature selection

The feature selection process used in this study consisted

of 3 steps. The first step was to apply a variance threshold to

remove features with zero variance (constant features with

variance lower than 0.5). Secondly, a univariate method (ANOVA,

analysis of variance) was used to remove noisy information in a

feature by feature basis. The last step was to apply a multivariate

method (linear logistic regression) using the l1 norm (l1 penalty)

that produces the feature importance weights by solving a

minimization problem using as penalty parameter C = 0.3 (40).

After that the SelectFromModel function from the sklearn library

is used as a meta-transformer for selecting features based on

the aforementioned importance weights. Further information

about the feature selection method can be found in Trivizakis et

al. (41).

2.7 Synthetic minority oversampling
technique

A common problem in classification analyses is the imbalanced

number of samples in each class. In our study, we had 41

IDH-mutant and 119 IDH-wildtype cases which can lead to a

biased machine learning classifier with reduced sensitivity. To

overcome this limitation, the synthetic minority oversampling

technique (SMOTE) was applied on the training phase of the

classification and the trained models were evaluated exclusively

on the unseen testing sets (42). SMOTE works by selecting

samples from the minority class that are close in the feature

space. It draws a line between the samples in the feature

space and produces a new sample at a point belonging to

that line.

2.8 IDH classification

In order to differentiate the IDH mutation status, the

support vector machine (SVM) classifier with the radial basis

function kernel (RBF) from the scikit-learn library (43) was

used. Support vector machines (SVM) have been widely used

in medical image classification problems (44–46). The SVM

classifier was trained in a 5-fold cross-validation scheme on the

imaging biomarker features stemming from the radiomic analysis.

To avoid sample selection bias and overfitted models the data

stratification was applied on a patient basis with respect to the class

representation across folds. The overall workflow is illustrated in

Figure 2.

2.9 Explainability and model performance
evaluation metrics

To evaluate and compare the performance of radiomic analysis

in the produced biomarkers with other studies in bibliography

a variety of metrics were used. More specifically, for every fold,

sensitivity, specificity, F1-score, accuracy (ACC) and area under

the receiver operating characteristic curve (AUC) with their

standard deviations were calculated on the unseen testing sets.

The performance metrics are defined as: sensitivity =
TP

TP+FN ,

specificity =
TN

FP+TN , F1-score =
TP

TP+0.5(FP+FN)
where, TP, TN,

FP, and FN stand for true-positive, true-negative, false-positive and

false-negative respectively. The ROC curve is a two-dimensional

graph in which the y-axis indicates the true positive rate and the

x-axis the false positive rate and the AUC has been extensively used

to evaluate MLframeworks.

To assess the explainability of the model, the SHAP method

(Shapley Additive Explanations) was used to explain individual

predictions. SHAP values are not model dependent, meaning they

can be used to interpret any machine learning model. Their

background relies on a game theoretic approach that measures

the contribution of each player to the final outcome. In ML,

each feature is assigned an importance value representing its

contribution to the model’s output. The Shapley value is the

average marginal contribution of a feature value across all possible

combinations in the feature space (47). Feature explainability is

of significant importance since it can explain relations of complex

features of an ML problem that cannot be seen with the naked eye.

In our case, the summary plot was computed on the biomarkers

with the best performance in terms of accuracy.

3 Results

The performance evaluation metrics for the prediction of IDH

mutation are summarized for radiomics features obtained with the

Gamma fitting method and with the leakage correction algorithms

in Tables 2, 3 respectively.

The calculated summary plot for the features stemming

from the MSI and the K1bidir are presented in Figures 3, 4

respectively. More specifically, after feature selection the most

prevalent radiomic features are depicted as pseudocolored dots

from blue to red. Non-significant features are near a SHAP value of

zero. While the distance from zero increases, a higher influence of a

specific feature in the prediction performance is denoted meaning

that decreased or increased values favor the negative (IDH-mutant)

or positive (IDH-wildtype) classes, respectively.

4 Discussion

In this work, DSC perfusion qualitative metrics, stemming

from different mathematical modeling techniques, were used to

quantify the perfusion signal into meaningful imaging markers

with the goal to develop a machine learning model for the

non-invasive phenotyping of the IDH mutation status. To

achieve this, we used an in-house software to calculate the

DSC qualitative metrics in order to avoid the variability in the
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FIGURE 2

The overall data analysis process with the proposed MRI parametric maps for IDH prediction.

TABLE 2 Classification metrics ± standard deviation per parametric map from the gamma fitting algorithm.

Parametric map Sensitivity Specificity F1_score ACC AUROC

rCBF 46.1± 10.7 69.8± 22.8 41.7± 11.7 63.7± 17.8 62.9± 15.5

rCBV 68.6± 11.3 58.1± 18.9 48.8± 12.3 60.6± 15.6 62.8± 13.1

rMTT 31.3± 11.3 80.5± 12.4 33.2± 9.4 68.1± 8.0 55.9± 8.2

MSI 51.3± 16.8 82.4± 12.9 50.0± 10.5 74.3± 7.7 74.2± 7.4

TMAX 41.3± 20.0 78.1± 11.5 37.8± 11.7 68.7± 5.2 61.2± 6.6

TABLE 3 Classification metrics ± standard deviation per parametric map from the leakage correction algorithm.

Parametric map Sensitivity Specificity F1_score ACC AUROC

nrCBV 52.5± 28.9 62.2± 15 37.8± 21.1 59.3± 11.5 61.5± 15.3

K1unidir 21.6± 13.7 85.7± 9.3 24.7± 15.4 69.3± 5.7 59.2± 7.76

K2unidir 56.1± 5.5 74.7± 5.2 48.9± 2.7 70± 3.1 71.7± 5.89

nrCBVunidir 59.1± 25 54.7± 20.1 39.1± 5.5 55.6± 9.3 65.0± 5.30

K1bidir 38.9± 17.8 87.4± 7.8 42.8± 16.7 75± 6.5 70.5± 7.93

K2bidir 34.4± 33.1 74.8± 17 27.9± 13.8 64.3± 4.6 63.9± 17.4

Kepbidir 44.1± 13.3 51.2± 12.4 30.5± 7.0 49.3± 8.2 50.7± 10.5

nrCBVbidir 58.8± 17.3 54.9± 27.7 41.5± 7.9 55.6± 16.9 57.9± 15.8

computation of parametric maps, since different software packages

can produce results with significant variability in multi-center

studies (48–50). In addition, our workflow does not require data

harmonization, which can be challenging due to the presence of

confounding variables and unknown factors that cause cross-site

variations (28).

Driven from the results of Tables 2, 3, the radiomics analysis

showed promising results on identifying the IDH mutation status.
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FIGURE 3

Summary plot of the SHAP values for the best of MSI radiomic features.

FIGURE 4

Summary plot of the SHAP values for the best of K1bidir radiomic features.

More specifically, the best candidates that can predict IDH

mutation status were MSI with an ACC of 74.3% and an AUCROC

of 74.2% and K1bidir with an ACC of 75% and an AUCROC

of 70.5%. In addition, most biomarkers showed high specificity

while the CBV-related (model dependent) parameters showed high

sensitivity. This can be attributed to the imbalanced nature of the

dataset, calling for further future research with additional data.

It is notable from the summary plots in Figures 3, 4 that the

most important texture features in terms of predictive importance

are derived from wavelet analysis for both MSI and K1bidir

parametric maps. This clearly indicates that specific frequency

bands offer more enhanced discriminatory power compared to the

original images. This observation is in line with in other published

works concerning IDH classification in gliomas which report high

contribution of several wavelet-derived features (21, 51) justifying

the need for more research on the effect of frequency filtering in

MR images for optimizing IDH mutation prediction. Clinically,

detecting biomarkers and tumor subtypes is crucial and a first step

in care for patients with gliomas. Biopsies currently serve as the

standardized approach for the identification of molecular markers,
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however due to its invasiveness is not without risk in addition to be

subject to sampling errors (52).

Specifically, the identification of IDH mutations is

recommended for the classification of gliomas in accordance

with the World Health Organization grading system (53). The

use of imaging could mean less invasive procedures for grading

and surveillance of gliomas (54, 55). Some research has previously

suggested that IDH markers can be identified through imaging

(56), with DSC multiparametric maps being able to identify

angiogenesis transcriptome signatures and pathobiological tumor

vasculature which are found in previously identified IDH mutant

gliomas (10, 11). Thus, as the IDH gene mutation can reflect

changes in metabolism, cellularity or angiogenesis and if this is

identifiable with non-invasive imaging, which this study has shown

(57); this could result in more accurate presurgical diagnoses and

patient management. The latter may improve treatment planning

from the initial presentation and treatment monitoring in the

clinical and in drug trials settings (58). For example, the knowledge

that a tumor is a glioma with an IDH mutation may favor a more

aggressive surgical resection, as recent studies suggest that a larger

area of resection independently correlates with survival rates

in IDH-mutant astrocytic gliomas (59). In addition, accurately

predicting IDH mutations may be useful for predictive factors

associated with treatment response, as IDH mutated gliomas have

shown to have a better response to current standadised treatment

(Temozolomide) than non-IDH mutant gliomas (60, 61).

According to a recent review on radiomics analysis predicting

IDH, an accuracy of 83% was presented when multicentric and

multiparametric MRI were incorporated in the study in low

grade gliomas (62). Also, as described in the introduction, only

two studies include solely DSC for the prediction of IDH. The

first work from Sudre et al. (18) reported an ACC of 71%. The

second work by Manikis et al. (21) reported an ACC of 70.6% after

the normalization of the DSC sequence data in two timepoints.

Considering these well documented constrains of the latter work,

the pre-processing steps toward IDH classification, this study

focused on applying radiomics analysis directly on the parametric

maps with the same dataset as of Manikis et al. (21). This effort, led

to an increased accuracy up to 5% compared with (21) discarding

the need for data harmonization since the radiomic analysis is

applied to the parametric maps that have been produced with the

same algorithm. This result was achieved by the SVM classifier.

The classifiers that have been introduced for the same problem by

the abovementioned works incorporate classifiers such as Logistic

Regression, Adaptive Boosting, K-Nearest Neighborhood and

Random Forest.

A whole brain scan was achieved in acquisition time below

2 seconds while adjusting the rest of the parameters for optimal

spatial resolution given the software and hardware constraints of

each scanner. Taking that into account, the derived parametric

maps are independent from imaging parameters This is an

important contribution of this work since it is well-known that

in multi-centric studies imaging data from different vendors

and protocols introduce significant variability in MRI image

quality, contrast and intensity range that affects radiomics analyses.

While there are remedies for this problem, there is still no

standardized harmonization pipeline hampering trustworthiness

and clinical adoption in multisite studies (63, 64). The proposed

analysis is based on producing physiology-driven parametric

maps from DSC MRI before radiomics extraction, which can

be easily standardized across centers if the same software

is used.

The major limitation of this study is the high imbalance in

IDH mutation status (41 IDH-mutant and 119 IDH-wildtype

cases) which occurs due to the natural prevalence of the

disease. Furthermore, another limitation of our work is that our

radiomic model does not work with non-enhancing-anaplastic

gliomas since perfusion curves are absent and cannot produce

parametric maps. In future radiomics studies, it could be

interesting to investigate a meta-model which combines the

highly specific outputs such as K1 with the highly sensitive

parameters such as nrCBVunidir and nrCBVbidir and rCBV

from gamma fitting algorithm for an overall more robust model.

However, a crucial step for future advancement of imaging

biomarkers will be the correct and consistent use of internationally

standardized and accepted quality criteria, terminology and

definitions within the field of advanced neuroimaging and

radiomics. In this study the AIF selection was performed

manually by the experts from the anterior cerebral artery as

the mean value of all voxels inside the AIF ROI. In a future

relevant work we could include an automated AIF selection

software to possibly achieve more stable fitting performance

and therefore more accurate parametric maps avoiding user

dependency (65). In addition, it could be interesting to see

the IDH classification performance on radiomics features

obtained from parametric maps stemming from model-

independent deconvolution techniques. If the intra-tumoral

perfusion curve differs from the model used, there will be

large errors in the perfusion estimate. This will enable a more

robust and reproducible signal analysis scheme for facilitating

clinical translation.

In conclusion, we developed a fully automated procedure

for the characterization of the IDH mutation status from the

DSC imaging markers. Despite the variability of the multi-

centric data, the analysis was focused directly on the imaging

biomarkers, without the use of complex histogram oriented or

other normalization techniques. This framework has the potential

of becoming an objective diagnostic support tool exploiting the

mathematical modeling of the DSC signal to characterize IDH

mutation status, which can aid in the diagnosis and management

of gliomas.
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