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ABSTRACT 

Purpose: Autistic spectrum disorder (ASD) is diagnosed through observation or interview 

assessments, which is time-consuming, subjective, and with questionable validity and reliability. 

We aim to evaluate the role of machine learning (ML) with neuroimaging data to provide a reliable 

classification of ASD. 

Methods: A systematic search of PubMed, Scopus, and Embase was conducted to identify relevant 

publications. Quality Assessment of Diagnostic Accuracy Studies-2 was used to assess studies’ 

quality. A bivariate random-effects model meta-analysis was performed to evaluate the pooled 

sensitivity, specificity, and diagnostic performance through the hierarchical summary receiver 

operating characteristic (HSROC) curve. Meta-regression was also implemented. 

Results: 44 studies (total of 5697 ASD and 6013 typically developing individuals) were included 

in the quantitative analysis. The pooled sensitivity for differentiating diagnostic groups was 86.25 

95% confidence interval [CI] (81.24, 90.08), while the pooled specificity was 83.31 95% CI 

(78.12, 87.48) with a combined area under the HSROC (AUC) of 0.889. Higgins I2 (>90%) and 

Cochran’s Q (p<0.0001) suggest a high degree of heterogeneity. In the bivariate model meta-

regression, a higher pooled specificity was observed in studies not using a brain atlas (90.91 95% 

CI [80.67, 96.00], p=0.032). Greater pooled sensitivity was seen in studies recruiting both males 

and female (89.04 95% CI [83.84, 92.72], p=0.021), and combining imaging modalities (94.12 

95% [85.43, 97.76], p=0.036).

Conclusions: ML with neuroimaging data is an exciting prospect in detecting individuals with 

ASD but still requires more studies to optimize and improve reliability for usage in clinical 

practices. 

Keywords: autism spectrum disorder; machine learning; neuroimaging; systematic review and 

meta-analysis 



INTRODUCTION 

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by 

impairments in social communication with restricted or repetitive patterns of behaviors, interests, 

or activities and hyper- or hyposensitivity to sensory stimuli [1]. Having emerged as a public health 

issue [2], ASD is one of the fastest-growing developmental disabilities. Previous studies have 

reported on the presence of early ASD symptoms in 12-month infants [3], though abnormalities in 

development may become apparent as early as six months of life [4]. However, as the average age 

for diagnosis is around three to five years of age, there is a wide gap in children not receiving the 

appropriate resources [5]. The timing of ASD detection is crucial as findings emphasize the 

importance of early comprehensive interventions for the improved long-term outcome of children 

diagnosed with ASD [6].   

ASD is typically considered a complex childhood condition with no single etiology. The 

current gold standard of diagnosing ASD is strictly based on lengthy behavioral observations by 

trained experts or caregiver interviews [7]. Despite efforts to standardize the assessment tools, the 

reliability and validity of the results are questionable when considering the administrators’ 

subjectivity in ratings due to differences in training and background expertise [8][9]. Moreover, 

only 8% of pediatric specialists are capable of administering routine evaluations [10], and lacking 

easy access to such tools due to geographic or cultural adaptability is another critical limitation 

[11]. As a result, there is a high demand for a more objective approach that could provide quick 

and accurate detection of ASD. 

For this reason, the search for an ASD-specific biomarker using neuroimaging data has 

been actively ongoing. Many studies have looked at anatomical differences in volume, cortical 

thickness, and surface areas in regions of interest [12]. Moving forward, more recent studies have 

looked at diffusion tensor imaging (DTI) [13] and functional MRI (fMRI) imaging [14]. 

Nonetheless, due to inconsistent findings between papers and lack of replication studies, a reliable 

biomarker for ASD remains elusive [15]. Reasons for this include previous studies having small 

sample sizes or recruiting participants that do not represent the generalized population. 

Additionally, with high heterogeneity in individuals with ASD, neural abnormalities related to the 

spectrum are likely to result from widespread connectivity networks rather than a single brain 



region [16]. Therefore, a comprehensive procedure in analyzing a vast amount of neuroimaging 

data with large datasets is needed to overcome these limitations. 

One promising and innovative approach is using machine learning (ML) with 

neuroimaging data. Being a subfield within artificial intelligence (AI), ML analyzes the input data 

patterns by extracting features and constructing the best fitting algorithm to make sense of the 

dataset with or without pre-existing knowledge [17]. Once classifiers are trained, the algorithm 

can be used on a new set of data and produce outcome labels [18]. Building complex models by 

processing large amounts of information, ML can surpass human performance in recognition of 

symptoms, early diagnosis, and prediction of prognosis while at the same time reducing human 

error [19]. Similarly, with the recent establishment of large neuroimaging database repositories for 

ASD, a growing number of studies are trying to combine ML with neural biomarkers to establish 

an objective and data-driven method in identifying individuals with ASD. If successful, it will 

reduce subjectivity and increase the diagnosis process’s reproducibility by contributing to the 

current understanding of ASD etiology [20]. 

            The study aimed to explore whether ML with neuroimaging data is reliable enough to 

distinguish individuals with ASD from their neurotypically developing (TD) peers through a 

systematic review and quantify its classification performance through a random-effects bivariate 

sensitivity-specificity meta-analysis. The literature search has identified a similar meta-analysis 

[21], but the novelty of our manuscript stems from the comprehensive meta-regression, which 

aimed to characterize ML protocol considerations in improving the sensitivity and specificity in 

the bivariate model.  

METHODS AND MATERIALS  

Search Process  

The review was conducted to fulfill the Preferred Reporting Items for Systematic Reviews 

and Meta-Analysis (PRISMA) criteria on published peer-reviewed journal articles [22]. Two 

reviewers (DYS and CT) independently conducted all the steps, and the inter-observer reliability 

was quantified using Cohen’s kappa (κ=0.877, p<0.001). In cases of discrepancy, a senior reviewer 

(SB) provided input for resolution.   



The review question was: “Can ML learning with neuroimaging data be employed to 

distinguish ASD from non-ASD individuals?”. As we aimed to evaluate the prospect of using ML 

with neuroimaging data to classify ASD, we included in this review studies which enrolled 

participants of all age-groups.  

Thus, a systematic search of Embase, PubMed, and Scopus was used to identify relevant 

publications published between 01/01/2010 and 15/09/2020. Search items were defined using the 

PICO (Patient/Intervention/Comparator/Outcomes) framework: (P)= (“autism spectrum disorder”, 

“autism”, “ASD”, “Asperger’s syndrome”); (I)=(“MRI”, “MR”, “DTI”, “DWI”,“CT”, “PET”, 

“PET-CT”, “SPECT”, “EEG”); (C)=(“machine learning”, “artificial intelligence”, “deep 

learning”); (O)= (“diagnosis”, “screening”, “identification”, “classification”). The PICO 

framework categories were combined using “AND”, while we grouped the variations within 

categories via “OR”. Reference lists of included articles were also reviewed to identify further 

eligible publications. 

Inclusion and exclusion criteria  

Inclusion criteria were peer-reviewed, English-written manuscripts available online 

through electronic indexing fulfilling the following criteria: (1) ML algorithms with neuroimaging 

data were used as an index test to distinguish ASD from TD individuals, (2) ASD was diagnosed 

using internationally accepted criteria (DSM-V or ICD 10) or gold-standard diagnostic evaluations 

(ADOS, ADI-R) as the reference standard,  (3) participants received both the index and the 

reference standard tests with blinding of the assessors.  Any studies were excluded if they 1) did 

not receive a final diagnosis (e.g., considered high-risk of ASD based on positive family history); 

2) participants with ASD were grouped with other developmental disorders (e.g., individuals with 

ASD and individuals with ADHD considered together as the ‘clinical’ group); 3) used ML only to 

predict symptom severity; 4) combined neuroimaging data with other behavioral or clinical 

information; or 5) any non-original research (i.e., reviews, lecture notes, book chapters, and 

conference abstracts).  

Data Extraction  

Reviewers (DYS, CT) independently extracted information based on participant 

characteristics (number of individuals within each diagnostic group, age, sex, method of diagnostic 



confirmation), neuroimaging data (modality, use of a database, pre-processing software, atlas), 

ML (algorithms, cross-validation), and accuracy results (sensitivity, specificity, positive predictive 

value, negative predictive value). In addition to screening supplementary materials for data, raw 

cell values were used to calculate psychometric properties when not provided in the studies.  

Quality Assessments  

Quality of the systematic review was assured by limiting the risk of bias and applicability 

concerns in line with the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) 

questionnaire [23]. Patient selection, conduct, and interpretation of ASD status classification based 

on ML algorithms and clinical diagnostic tests were analyzed to meet the review question and 

avoid bias introduction. 

Statistical Methods 

Studies reporting enough variables to allow the calculation of true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN) were included in the quantitative 

analysis. Statistical analyses were performed using R version-3.6.2 (packages “meta” and “mada”) 

with p<0.05 considered to be of significance. 

The univariate random-effects model was employed to calculate the pooled specificity and 

sensitivity according to the diagnostic test accuracy meta-analysis methodology [24]. As the 

specificity and sensitivity are inter-dependent, a bivariate random-effects model meta-analysis was 

used to generate a hierarchical summary receiver operating characteristic (HSROC) curve with its 

95% confidence region [25]. We also calculated the area under the ROC (AUC) curve. 

Furthermore, we measured the pooled diagnostic odds ratio (DOR), positive likelihood 

ratio (PLR), negative likelihood ratio (NLR), and their corresponding 95% confidence intervals 

(CI). DOR represents the odds of having a positive index test in ASD compared to healthy control 

participants (Supplementary Equation 1). PLR/NLR describes how many times more/less likely 

is the index test results to be positive/negative in ASD vs TD individuals (Supplementary

Equations 2 and 3). 

Inter-study heterogeneity was determined via Cochran’s Q and Higgins I2 statistics. 

Cochran’s Q test with a p<0.05 or I2>50% was interpreted as indicating the presence of 

heterogeneity [26]. Publication bias was assessed via the visual inspection of contour-enhanced 



Funnel and using Egger’s test. Asymmetrical funnel plots or Egger’s test p<0.05 were interpreted 

as indicating the possibility of publication bias. 

We performed the best set meta-analysis, which included the dataset corresponding to each 

study’s maximal accuracy. As many studies reported multiple analyses by altering various 

parameters, a complete case meta-analysis that included all the analyses reported were also 

performed. Meta-regression was employed to explore the contributors of heterogeneity in the 

bivariate model with the following variables used as a moderator: (1) age group of participants 

(toddlers defined as <2 years, children and adolescents defined as <19 years, adults >20 years or 

lifetime in cases where studies included participants across age groups); (2) sex of participants 

(only male included vs both males and females included); (3) diagnostic test for ASD; (4) 

participant origin (recruited at a research center/hospital vs data from a publicly available 

database); (5) imaging modality; (6) atlas template (EEG studies were removed from this analysis); 

(7) ML algorithm; (8) cross-validation (CV) method or equivalent. All meta-regression moderators 

were treated as categorical variables. Only the best set meta-analysis was used to conduct the meta-

regression as the complete case meta-analysis had unequal contributions from the studies.   

As small-sized studies suffer from over-fitting, which often leads to higher sensitivity and 

specificity, we replicated the above meta-analysis while only including studies with over 100 

participants. 

RESULTS 

Search Results  

Database searchers revealed 231 articles, of which 84 duplicates were identified and 

removed. However, we carefully screened non-original research papers and added 26 new studies. 

Upon screening the titles and abstracts against our research question, 73 manuscripts were 

thoroughly assessed. The qualitative analysis considered 65 studies after applying the inclusion 

and exclusion criteria. As some studies lack the data required for the meta-analysis, 44 studies 

were included in the quantitative analysis with a total of 5697 ASD and 6013 TD individuals [27-

70]. Figure 1 presents a visual representation of the PRISMA flow chart. Characteristics of the 

included participants are presented in Table 1, while Table 2 summarizes the study details.  



Qualitative Assessment  

In general, the 44 studies included in the qualitative analysis evaluating the use of ML with 

neuroimaging data to distinguish ASD from TD individuals were of good methodological quality 

(Figure 2). According to QUADAS-2, the risk of bias was assessed across four domains: patient 

selection, index test, reference standard, and flow and timing. Regarding patient selection, 26.15% 

were considered high-risk because several studies only included male participants or chose 

neuroimaging data that followed specific protocols without providing sufficient justification, and 

32.31% were labelled as unclear because they lacked the information to assess the domain.  

Regarding flow and timing, 9.23% were regarded as unclear. While there were no concerns for the 

index test, the reference standard domain resulted in 9.23% of the studies being labelled as unclear. 

The applicability concerns were at low risk across three domains: patient selection, index test, and 

reference standard.   

Meta-analysis 

Table 3 summarizes the meta-analysis results. There was a high degree of heterogeneity 

(I2=95.90%, p<0.0001) between the studies. When attempting to differentiate ASD from TD 

participants, the pooled sensitivity was 86.25 95% CI (81.24, 90.08) (Figure 3), while the 

specificity was 83.31 95% CI (78.12, 87.48) (Figure 4). The pooled DOR was 19.66 (95% CI 

13.40, 28.84), while the AUC was 0.889 (Figure 5). The inspection of the color-enhanced funnel 

plots (Supplementary Figures 1 and 2) and the Egger test (p<0.001) are in keeping with the 

possibility of publication bias When considering only the studies that had over 100 participants, 

both the sensitivity of 83.23 95% CI (76.79, 88.16) and the specificity of 78.90 95% CI (70.85, 

85.19) are significantly lower. The high degree of heterogeneity and the possibility of publication 

bias remain in this analysis as well.  

In the complete case analysis (Supplementary Table 1), a high degree of heterogeneity 

(I2=96.80, p<0.0001) and the possibility of publication bias (Egger test p<0.0001) were also noted. 

However, ML’s diagnostic performance in differentiating ASD from TD participants was lower: 

DOR 5.40 (4.87, 5.98) and AUC 0.723. 



Meta-regression 

Meta-regression results are presented in Table 4. A higher pooled sensitivity in the 

bivariate model was observed in studies recruiting both males and females (89.04 95% CI [83.84, 

92.72], p=0.021), combining multiple imaging modalities (94.12 95% [85.43, 97.76], p=0.036) on 

a backbone of anatomical MRI, DTI or fMRI or using EEG (99.85% 95% CI [37.18, 1.00], 

p=0.025). A higher pooled specificity in the bivariate model was seen in studies not using a brain 

atlas (90.91 95% CI [80.67, 96.00], p=0.032). The bivariate meta-regression found no other 

moderator variable to be associated with the study heterogeneity. 

DISCUSSION 

            We reviewed published studies on neuroimaging data with ML algorithms as an objective 

method to detect individuals with ASD. Based on the 44 studies included in the quantitative 

analyses, the pooled sensitivity and specificity were 86.25 95% CI (81.24, 90.08) and 83.31 95% 

CI (78.12, 87.48), respectively. However, when considering only large studies which are less prone 

to overfitting, the sensitivity of 83.23 95% CI [76.79, 88.16] and specificity of 78.90 95% CI 

(70.85, 85.19) were lower, but they are more likely to reflect the performance in real-life settings. 

While there is no standard protocol in processing neuroimaging data or implementing ML 

algorithms, our meta-regression analysis provides insights into improving classification 

performance.  As such, a higher pooled sensitivity was associated with including both males and 

females, combining structural and functional neuroimaging modalities, or using EEG, while a 

higher specificity was obtained in studies who did not use a brain atlas.  

            First, studies that included both male and female participants obtained a better sensitivity 

in distinguishing ASD from TD individuals. Most epidemiological studies report a 4:1 male:female 

ratio in ASD [71][72]. Because of the lower prevalence of ASD in females, 11 studies included 

only male participants. Focusing only on males may bias the results and limit the prospect of 

generalizing the findings. Furthermore, recent studies highlighted the possibility that females are 

being underdiagnosed as they are probably exhibiting different clinical features [73][74]. 

Therefore, including both males and females enables addressing the core neuroimaging features 

of ASD rather than reporting sex-specific traits.   



            ASD has been associated with both different structural and functional characteristics, both 

histologically and on neuroimaging, compared to TD individuals [75]. Thus, it is not surprising to 

see studies that employed a combination of anatomical MRI plus DTI, or fMRI obtained a higher 

diagnostic sensitivity in the bivariate model. Hence, we urge that future effort should concentrate 

on combining various neuroimaging modalities. Similarly, EEG has emerged as having a better 

sensitivity performance in ASD classification in the meta-regression. It has been postulated that 

children with ASD have a different brain network topology characterized by decreased long-range 

coherence (especially between the frontal and occipital lobe) but increased short range 

connectivity between the frontal and parietal/temporal lobes [76]. Although it seems like a 

promising lead to follow, none of the included studies had more than 100 participants raising 

concerns about overfitting.  

            In large, ML algorithms can be divided into supervised, semi-supervised, unsupervised, 

and reinforcement learning [77]. Most of the studies used supervised algorithms, with the most 

common choices being support vector machines (SVM), neural networks (NN), and decision trees 

(DT). However, supervised learning has certain limitations, including overtraining and overfitting 

[78]. Thus, to maintain a high classification performance when exposed to new input data, the 

supervised learning algorithm needs to be constantly re-trained. Additionally, unlike 

unsupervised/semi-supervised learning, supervised learning can’t infer new information as it only 

specializes in the training dataset. The latter is of paramount importance, given the complexity of 

ASD. As such, cutting-edge supervised methods such as NN demonstrated similar performance to 

primitive ones such as Naïve Bayes and SVM. Studies employing semi-supervised approaches 

such as granular NN [69] or stacked deep auto-encoders [29] reported sensitivities and specificities 

over 95%, but had small sample sizes. Thus, there is a demand for research into semi-supervised 

ML algorithms for ASD classification. 

               Atlas selection affects how the boundaries will be labelled and pre-defines the number of 

features that will be provided to the ML algorithm. Surprisingly, we observed a better specificity 

in studies that did not report using a brain atlas. However, a recent review [79] highlighted the 

limitations of the existing brain atlases and the consequences of their inappropriate use.  First of 

all, most atlases stem from small cohorts which are unlikely to be representative of the general 

population.  For example, many atlases are based on the Talairach and Tournoux atlas, derived 

from a single cadaveric brain of an elderly Caucasian female. In addition, most atlases lack the 



appropriate clinical data measurements to support their claim of representing a normal brain. There 

is a lack of an age-specific atlas for infants, children, or adolescents, and such use of an age-

inappropriate atlas can be problematic. Using the ICBM-DTI-81 atlas, which is based on 18-59 

years old individuals on data acquired on 8–12-year-old children, a study [47] obtained a poor 

specificity of less than 25%.  In addition, if the selected features cover a wide area, there is a higher 

chance that any subtle differences present in individuals with ASD might be overseen. Thus, we 

recommend that future studies be cautious on its selection for an appropriate brain atlas.  

               Cross-validation is a technique commonly used to evaluate the performance of a 

predictive ML algorithm.  In meta-regression, the choice of cross-validation method did not affect 

the sensitivity or specificity of the classification. Given the complexity of ASD, data subsamples 

may not always be representative or have the same probability density function as the general 

dataset. Thus, cross-validation may not always guarantee good performance. 

             As the definitive diagnosis based solely on clinical assessment is difficult, there is a high 

demand for ML research with neuroimaging data as a diagnostic tool. Our results suggest that 

using semi-supervised ML algorithms based on combined anatomical with functional 

neuroimaging data could provide a strong foundation for future research. However, several 

questions need to be investigated before ML and neuroimaging can be used in clinical settings. A 

potential future direction would be to explore how the neural biomarkers specifically contribute to 

ASD-related traits. One way of doing this would be to see whether the identified biomarkers 

effectively distinguish individuals with ASD and other developmental disorders. Additionally, as 

ASD covers a broad spectrum with varying symptom manifestation, we urge future studies to 

investigate how symptom severity influences the results. Another interesting result is that our 

meta-regression did not find any significant difference in sensitivity or specificity between studies 

which included toddlers, children and adolescents, adults, or participants of all ages. Such results 

suggest a similar classification performance regardless of age. However, as the median age for 

ASD diagnosis is four years old, we urge future studies using ML with neuroimaging data to 

replicate the findings in the relevant pediatric population to ensure a smoother transition to clinical 

practice.  

            The use of ML with neuroimaging data to classify neuro-psychiatric disorders is gaining 

popularity. Similar classification performances (i.e., sensitivity >80% and specificity >80%) were 

obtained in recent meta-analyses for Alzheimer’s disease [80] and schizophrenia [81], but lower 



values were observed for bipolar disorder [82]. While for schizophrenia, functional imaging 

yielded better sensitivities, this was not the case for ASD as we found that combined modalities 

are superior. Conversely, although combining multiple ML algorithms improved the classification 

accuracy in Alzheimer’s disease, this was not observed in the three studies which attempted to do 

so for ASD. Theoretically, a hybrid system combining deep learning approaches such as DNN for 

feature extraction and a traditional ML algorithm such as SVM for classification can yield better 

results. Traditional ML algorithms are unable to perform feature extraction as they have been 

designed for classification purposes based on well-defined optimal features. On the other hand, 

deep learning can automatically identify optimal features from the data, but to achieve a high 

classification performance it requires massive amounts of neuroimaging data which may not 

always be clinically feasible. In addition, the extracted data may be better suited for an algorithm 

which is specialized to perform classifications.  

             The high degree of heterogeneity (I2 >95%) is concerning and probably reflects the lack 

of protocol standardization.  We observed high inter-study variability in the choice of imaging 

modality, the protocol for the imaging acquisition, data pre-processing, the ML algorithm, the 

post-processing protocol, and the cross-validation method. Reporting ML protocols in a 

transparent and reproducible way, while difficult to standardize, will help promote higher 

generalizability. In addition, image protocol standardization is feasible and should be explored 

before larger-scale studies in clinical or research settings.  

             This systematic review includes a high number of high-impact publications which have 

demonstrated the potential of using ML with neuroimaging data to predict ASD status. However, 

many manuscripts have shown either a lack of transparency, replicability, ethics and/or 

effectiveness (TREE). These concerns have been extensively reported in the AI/ML literature [83] 

and addressing TREE issues is of vital importance to prevent wasting valuable research [84]. 

Transparent, responsible, and ethical use of AI is even more important in ASD research as this 

area involves individuals with neurodevelopmental disorders. Firstly, to avoid deceptive claims, 

researchers should ensure that the data collected is representative of the population concerned and 

that the ML/AI algorithm is always compared to the current gold standard [85].  Secondly, to 

ensure replicability, the AI/ML methodology should be made available to other researchers to 

promote external validation of the findings. Thirdly, to benefit the general population, the AI 



pipeline should not widen pre-existing healthcare and social inequalities but should be cost-

effectively implemented with easily interpretable outputs in clinical settings [86].  

       Limitations of this systematic review with meta-analysis include the high heterogeneity 

between studies and the possibility of publication bias for some analyses. However, our meta-

regression highlighted a few sources of heterogeneity: sex of the recruited participants, pre-

processing software, imaging modality and cross-validation method. Another limitation was the 

exclusion of studies that lacked sufficient quantitative data. For studies that possibly reported in a 

biased, we only included important results.  Lastly, all studies excluded participants if head motion 

impacted the image quality, this might have impacted the results as it can introduce selection bias 

by limiting individuals with greater symptoms (the latter causing excessive repetitive movements); 

though we should acknowledge that severe motion artefacts cannot be reliably retrospectively 

corrected.  Although our findings suggest that combining anatomical and functional neuroimaging 

data yields better results, we recognize that it can be challenging to perform multiple imaging 

modalities in young children. Lastly, the ML literature suffers from data leakage, which has not 

been considered within this review.  

CONCLUSION 

            ML using neuroimaging data is a promising prospect in ASD classification. Given the high 

sensitivity and specificity achieved in the studies, our results provide insight as a potential robust 

approach to aid in clinical settings, but further studies are required to test its reliability in the 

relevant age groups. Findings need to be interpreted with caution as there is high degree of 

heterogeneity between studies, which stems mostly from differences in study design, image 

acquisition and ML protocol. Image protocol standardization and transparent ML protocol 

reporting will be crucial in generalizing results and establishing a foundation for application in 

real-world practice.   
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Figure 1.  PRISMA flow chart of study selection process

ASD, autism spectrum disorder; PRISMA, Preferred Reporting Items for Systematic Reviews and 

Meta-Analysis; ML, machine learning.  

Figure 2. QUADAS-2 Questionnaire : Quality Assessment Results 

According to QUADAS-2, risk of bias is assessed across four domains (patient selection, index 

test, reference standard, and flow and timing), while applicability concerns are assessed in only 

the first three domains. 

QUADAS-2, Quality Assessment of Diagnostic Accuracy Studies-2. 

Figure 3. Forest plot for the univariate random-effects model sensitivity meta-analysis of the 

studies using machine learning to distinguish Autistic Spectrum Disorder (ASD) from 

Typically Developing (TP) individuals 

Figure 4. Forest plot for the univariate random-effects model specificity meta-analysis of the 

studies using machine learning to distinguish Autistic Spectrum Disorder (ASD) from 

Typically Developing (TD) individuals 

Figure 5 Hierarchical summary receiver operating characteristic (HSROC) curve with its 

95% confidence region of the diagnostic performance of machine learning in differentiating 

Autistic Spectrum Disorder from Typical development 

Youden’s J Index represents the optimum cut-off between sensitivity and specificity. 

ASD, autistic spectrum disorder; CI, confidence interval; HSROC, hierarchical summary receiver 

operating characteristic; ML, machine learning.
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Table 1. Characteristics of the included participants 

Study 
N 

(ASD/TD) 
Age Sex Diagnosis 

Participant 
Source 

Toddlers  

Emerson et al (2017) [27] 11 / 48 6m; 24m Both DSM-IV; ADOS; ADI-R IBIS 
Shen et al (2018) [28] 159 / 77 2-4 years Both ADOS; ADI-R Recruited 
Xiao et al (2017) [29] 46 / 39 18-37 months Both DSM-IV; ADOS; ADI-R Recruited 
Children and adolescents 
Abraham et al (2017) [30]  403 / 468 9-18 years Both ADOS; ADI-R ABIDE 
Akhavan et al (2018) [31] 116/69 5-10 years Both ADOS; ADI-R ABIDE 
Bajestani et al (2019) [32] 30 / 30 4-8 years Both Unclear Unclear 
Bosl et al (2017) [33] 44 / 47 3-12 years Both ADOS Recruited 
Brahim et al (2020) [34] 403 / 468 < 20 years Both ADOS; ADI-R ABIDE 
Chen et al (2020) [35] 119 / 131 6-18 years Both ADOS; ADI-R ABIDE 
Dekhil et al (2018) [36] 123 / 160 9-15 years Both ADOS; ADI-R NDAR 
Duchesnay et al (2011) [37] 45 / 13 5-15 years Both DSM-IV; ADI-R Recruited 
Eill et al (2019) [38] 46 /47 7-18 years Both ADOS; ADI-R Recruited 
Gori et al (2015) [39] 21 / 20 2-5 years Males only DSM-IV Recruited 
Grossi et al (2017)[40] 15 / 10 7-14 years Both DSM-V; ADOS Recruited 
Grossi et al (2019) [41] 20 / 20 4-14 years Both DSM-V Unclear 
Iidaka et al (2015) [42] 312 / 328 < 20 years Both DSM-IV; ADOS; ADI-R ABIDE 
Ingalhalikar et al (2011) [43] 45 / 30 7-13 years Both Unclear Unclear 
Irimia et al (2018) [44] 110 / 83 9-15 years Both DSM-V; ADOS; ADI-R Recruited 
Jiao et al (2010) [45] 22 / 16 6-15 years Both DSM-IV; ADI-R Recruited 
Kam et al (2017) [46] 119 / 144 < 20 years Both ADOS; ADI-R ABIDE 
Payabvash et al (2019) [47] 14 / 33 8-12 years Males only ADOS; ADI-R Recruited 
Pham et al (2020) [48] 40 / 37 4-13 years Both Unclear Recruited 
Schirmer et al (2021) [49] 25 / 25 8-12 years Both ADOS; ADI-R Recruited 
Spera et al (2019) [50] 102 / 88 6-13 years Males only ADOS ABIDE 
Xiao et al (2019) [51] 117 / 81 5-12 years Both ADOS; ADI-R ABIDE 
Zhang et al (2018) [52] 70 / 79 8-13 years Males only Unclear Recruited 
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Adults 
Ecker et al (2010) (1) [53] 20 / 20 20-68 years Males only ICD-10; ADOS; ADI-R Recruited 
Ecker et al (2010) (2) [54] 22 / 22 18-42 years Males only ICD-10; ADOS; ADI-R Recruited 
Yahata et al (2016) [55] 74 / 107 * 18-42 years Both DSM-IV; ADOS; ADI-R Recruited 
Yassin et al (2020) [56] 45 / 125 20-60 years Males only DSM-IV; ADOS; ADI-R Recruited 
Lifetime 
Chen et al (2015) [57] 126 / 126 6-35 years Both ADOS; ADI-R ABIDE 
Desphande et al (2013) [58] 15 / 15 16-34 years Both ADOS; ADI-R Recruited 
Eslami et al (2019) [59] 505 / 530 9-34 years Both ADOS; ADI-R ABIDE 
Fu et al (2021) [60] 364 / 381 6-34 years Males only ADOS; ADI-R ABIDE 
Ghiassian et al (2016) [61] 538 / 573 8-25 years Both ADOS; ADI-R ABIDE 
Heinsfeld et al (2018) [62] 505 / 530 7-45 years Both ADOS ABIDE 
Huang et al (2020) [63] 159 / 197 8-21 years Both ADOS; ADI-R ABIDE 
Kassraian-Fard et al (2016) [64] 77 / 77 < 40 years Males only ADOS; ADI-R ABIDE 
Kazeminejad et al (2018) [65] 374 / 442 * 5-65 years Both ADOS; ADI-R ABIDE 
Li et al (2018) [66] 149 / 161 * 10-33 years Both ADOS; ADI-R ABIDE 
Plitt et al (2015) [67] 148 / 148 11-23 years Males only ADOS; ADI-R ABIDE 
Rakic et al (2020) [68] 368 / 449 5-64 years Both ADOS; ADI-R ABIDE 
Tomasiello et al (2019) [69] 78 / 104 9-20 years Both ADOS; ADI-R ABIDE 
Zu et al (2018) [70] 45 / 47 Unclear Both ADOS; ADI-R ABIDE 

ABIDE, Autism Brain Imaging Data Exchange; ADOS, Autism Diagnostic Observation Schedule; ADI-R, Autism Diagnostic 

Interview-Revised; ASD, autism spectrum disorder; DSM, Diagnostic and Statistical Manual of Mental Disorders; IBIS, Infant Brain 

Imaging Study; NDAR, National Database for Autism Research; TD, typically developing.  
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Table 2. Characteristics of the included studies

Study Imaging 
Modality 

Pre-processing 
Software 

Atlas Machine Learning 
Algorithm 

Cross-validation 
Methood 

Toddlers  

Emerson et al (2017) [27] rs-fMRI N/A Self-generated SVM Nested LOO 
Shen et al (2018) [28] aMRI N/A N/A Balance-Boosted DT OOB
Xiao et al (2017) [29] aMRI FreeSurfer Desikan-Killiany RF; Naive Bayes;SVM 5-fold; OOB
Children and adolescents 
Abraham et al (2017) [30] 

rs-fMRI PCP 
MSDL; Yeo; HO; ICA; 

K-Means; Ward
SVM 10-fold; LSO 

Akhavan et al (2018) [31] aMRI; rs-
fMRI

SPM AAL Neural network 10-fold 

Bajestani et al (2019) [32] EEG N/A N/A kNN LOO 
Bosl et al (2017) [33] EEG NetStation N/A SVM 10-fold 
Brahim et al (2020) [34] 

rs-fMRI PCP Glasser  
LR; L-SVM; 
RBF-SVM

Intra-Site 

Chen et al (2020) [35] rs-fMRI SPM AAL Naïve Bayes 10-fold 
Dekhil et al (2018) [36] 

rs-fMRI FSL 
Parietal Cortex; TPJ; 

Neubert Ventral Frontal; 
Sallet Dorsal Frontal

SVM 2, 4, 10-fold; LSO 

Duchesnay et al (2011) [37] 
PET N/A N/A SVM; Lasso LR; LDA 

LOO; 10-fold; 
aPena

Eill et al (2019) [38] aMRI; 
DTI; 

fcMRI

AFNI; 
FreeSurfer; FSL 

Power; HO CRF OOB 

Gori et al (2015) [39] aMRI SPM; FreeSurfer Desikan-Killiany SVM LPO 
Grossi et al (2017)[40] 

EEG N/A N/A 
LR; Naïve Bayes; k-CM; 

kNN; Sn; RF; SMO
LOO 

Grossi et al (2019) [41] 
EEG 

SystemPlus 
Evolution

N/A 
Back propagation; kNN; 

Sn; k-CM
N/A 

Iidaka et al (2015) [42] 
rs-fMRI SPM; DPARSF AAL PNN 

LOO; 2, 10, 50-
fold
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Ingalhalikar et al (2011) [43] DTI N/A EVE SVM LOO 
Irimia et al (2018) [44] aMRI; DTI LONI; TrackVis; 

FreeSurfer
Destrieux SVM 10-fold 

Jiao et al (2010) [45] aMRI FreeSurfer Self-generated SVM; MLP; FT; LMT 10-fold 
Kam et al (2017) [46] 

rs-fMRI N/A AAL 
SVM; RFE-SVM; G-

SVM; DRBM
10-fold 

Payabvash et al (2019) [47] 
DTI FSL ICBM-DTI-81 

Naïve Bayes; RF; L-
SVM; SVM-Polynomial 

Kernel; NN
1000-fold 

Pham et al (2020) [48] EEG N/A N/A LDA; QDA; SVM; 
kNN;RBF-SVM; PNN

10-fold 

Schirmer et al (2021) [49] rs-fMRI AFNI; SPM AAL; CC200; HO SVM 5-fold  
Spera et al (2019) [50] rs-fMRI PCP AAL; CC200; HO SVM LSO 
Xiao et al (2019) [51] 

rs-fMRI FSL; MELODIC N/A Stacked Auto-Encoders 
11, 33, 66, 99, 

198-fold
Zhang et al (2018) [52] DTI Slicer Self-generated SVM 10-fold 
Adults 
Ecker et al (2010) (1) [53] aMRI FreeSurfer N/A SVM LTO 
Ecker et al (2010) (2) [54] aMRI SPM N/A RFE-SVM LOO 
Yahata et al (2016) [55] rs-fMRI SPM AAL; Brainvisa Sulci L1-SCCA; SLR LOO 
Yassin et al (2020) [56] aMRI FreeSurfer N/A LR; SVM; DT 10-fold 
Lifetime 
Chen et al (2015) [57] 

rs-fMRI FSL 
Surface Based Atlas 

Power 
PSO-SVM; RFE-SVM; 

RF
LOO; OOB 

Desphande et al (2013) [58] DTI; 
rs-fMRI

SPM N/A SVM 10-fold 

Eslami et al (2019) [59] 
rs-fMRI PCP 

CC200; AAL;  
Talariach and Tournoux 

Autoencoder; Single 
Layer Perceptron; SVM; 

RF
10-fold 

Fu et al (2021) [60] aMRI FSL N/A Boost learning DT  10-fold 

Ghiassian et al (2016) [61] aMRI; rs-
fMRI

SPM HO; Bangor Cerebellar  SVM 5-fold 
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Heinsfeld et al (2018) [62] rs-fMRI PCP CC200 SVM; RF; DNN 10-fold 
Huang et al (2020) [63] 

rs-fMRI DPARSF 
AAL; CC200;  
Dosenbach 160

SVC; SASL; LR; 
Binary; kNN;

10-fold 

Kassraian-Fard et al (2016) 
[64]

rs-fMRI SPM CC200 
LR; Lasso LR; SVM; 

PNN; LDA; Naïve Bayes
Nested 10-fold 

Kazeminejad et al (2018) [65] rs-fMRI AFNI; ANTS; 
FSL

AAL SVM 10-fold 

Li et al (2018) [66] rs-fMRI N/A AAL SVM; DNN; DTL-NN 5-fold 
Plitt et al (2015) [67] 

rs-fMRI AFNI 
DiMartino; Power; 

Destrieux 

RF; kNN; L-SVM; RBF-
SVM; Naïve Bayes; 

LDA; LR; L1-LR; L2L-
R; EN-LR

LOO; Stratified 
10-fold; Stratified 

3-fold 

Rakic et al (2020) [68] aMRI; rs-
fMRI

N/A AAL; CC200; Destrieux  Stacked Auto-Encoders; 
Multi-layer Perceptron

10-fold 

Tomasiello et al (2019) [69] 
rs-fMRI N/A N/A 

Granular Functional 
Network

5-fold 

Zu et al (2018) [70] rs-fMRI N/A AAL SVM; STM 10-fold 

3D, three dimensional; AAL, automated anatomical labelling; AFNI: Analysis of Functional Neuroimages; aMRI, anatomical magnetic 

resonance imaging; CC, Craddock; CRF, conditional random field; DNN, deep neural network; DPARSF: Data Processing Assistant 

for Resting-State fMRI; DRBM, discriminative restricted Boltzmann machine; DT, decision network; DTI, diffusion tensor imaging; 

DTL-NN, deep transfer learning neural network; EEG, electroencephalography; ENLR, elastic-net-regularized logistic regression; FSL, 

FMRIB software library; FT, functional trees; G-SVM, graph theory-based SVM; HO, Harvard-Oxford; ICA, independent component 

analysis; ICBM, International Consortium of Brain Mapping; k-CM, k-contractive map;  kNN,  k-nearest neighbors; L1-LR: L1-

regularized LR; L1-SCCA, L1-norm regularized sparse canonical correlation analysis; L2-LR: L2-regularized LR; LDA, latent 

discriminant analysis; LMT, logistic model tree; LOO, leave one out; LPO, leave one participant out; LR, logistic regression; LSO, 

leave site out; L-SVM, linear SVM; LTO, leave two out; MSDL, multi-subject dictionary learning;  MLP, multilayer perceptron; MRI, 

magnetic resonance imaging; OOB, out-of-bag; PET, positron emission tomography; PNN, probabilistic neural network; PSO SVM, 

particle swarm optimization; QDA, quadratic discriminant analysis; SVM; RBF-SVM: radial basis functional kernel SVM; RF, random 
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forest; rs-fMRI, resting state functional MRI; SASL, salient-adaptive sparsity learning; SLR, sparse LR; SMO, sequential minimal 

optimization; Sn, sine net neural networks; SPM, statistical parametric mapping; SVC, support vector classified; SVM, support vector 

machine; STM, support tensor machine; TPJ, tempo-parietal junction. 
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Table 3: Diagnostic performance of machine learning in differentiating Autistic Spectrum Disorder from Typical development: 

Meta-analysis results in the best set 

Number 
of 
studies 

Number of 
Participants 

Parameter Heterogeneity Effect size  Egger’s 
test 

ASD TD     I2 p-value Pooled Estimate (95% CI) AUC p-value 

44 5697 6013 Sensitivity  95.90 % <0.0001 86.25 (81.24, 90.08) 0.889 <0.0001 

Specificity  95.90% <0.0001 83.31 (78.12, 87.48) 

Diagnostic Odds Ratio 47.01% 0.001 19.66 (13.40, 28.84) 

Positive Likelihood Ratio 42.20% 0.002 3.76 (3.15, 4.48) 

Negative Likelihood Ratio 43.83% 0.001 0.24 (0.20, 0.29) 

23* 5066 5416 Sensitivity 96.7% <0.0001 83.23 (76.79, 88.16) 0.871 <0.0001
Specificity  97.7% <0.0001 78.90 (70.85, 85.19) 

Diagnostic Odds Ratio 56.87% <0.0001 14.66 (9.18, 3.15) 
Positive Likelihood Ratio 55.38% 0.001 3.29 (2.67, 4.06) 

Negative Likelihood Ratio 53.33% 0.001 0.25 (0.20, 0.32) 

* Represents the number of studies having at least 100 participants.  
Significant p-values are highlighted in bold. 

AUC, under the hierarchical summary receiver operating characteristic curve; CI, confidence interval. 

Other abbreviations as in Table 1.  
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Table 4. Meta-regression results of the best set analysis. 

Category Sub-category Number 
of 
studies 

Pooled Sensitivity 
 (95% CI) 

Pooled Specificity 
 (95% CI) 

Bivariate Model 
p-value 
for Sensitivity 

Bivariate Model 
 p-value 
for FPR 

Age-group Toddler 3 83.33 [77.76; 87.73] 91.25 [46.18; 99.22] ref ref 

Children and 
Adolescents

23 89.61 [81.43; 94.43] 83.42 [74.99; 89.41] 0.680 0.975 

Adults 4 77.85 [67.30; 85.72] 86.70 [81.30; 90.72]   0.718 0.482 

Lifetime 13 83.33 [77.76; 87.73] 80.24 [70.60; 87.29] 0.941   1.000 

Sex Only males 10 74.33 [65.48; 81.55] 80.31 [73.58; 85.66] ref ref 

Both males and 
females

34 89.04 [83.84; 92.72] 84.18 [77.68; 89.05] 0.021 0.707 

Diagnosis ADOS/ADI-R 27 84.02 [76.33; 89.55] 80.18 [72.34; 86.23] ref ref 

DSM 2 94.28 [47.26; 99.67] 94.08 [17.11; 99.92] 0.485 0.798 

DSM AND 
ADOS/ADI-R

9  89.83 [82.00; 94.48] 88.25 [85.65; 90.44] 0.308 0.112 

ICD and 
ADOS/ADI-R

2 83.33 [68.95; 91.84] 88.10 [74.41; 94.96] 0.988 0.409 

Participant 
origin 

Recruited 18 90.48 [80.85; 95.53] 85.14 [78.86; 89.79] ref ref 

Database 23 83.18 [76.85; 88.05] 80.98 [72.04; 87.56] 0.485 0.289 

Imaging 
modality  

aMRI 8 80.83 [77.74; 83.58]   80.53 [73.71; 85.92] ref ref 

rs-fMRI 22 82.24 [74.95; 87.75] 81.83 [73.02; 88.23] 0.944 0.895 

Multiple 5 94.12 [85.43; 97.76] 81.30 [58.97; 92.94] 0.036 0.957 
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EEG 5 99.85 [37.18; 1.00] 93.57 [84.09; 97.56] 0.025 0.105 

DTI 3 63.73 [29.89; 87.87] 85.98 [67.92; 94.67] 0.264 0.897 

PET 1 91.11 [78.59; 96.62] 76.92 [47.85; 92.37] 0.456 0.809 

Atlas AAL 7 83.09 [72.11; 90.33] 73.75 [57.24; 85.50] ref ref 

CC200   3 70.26 [65.89; 74.29] 66.79 [60.90; 72.21] 0.206 0.584 

Desikan-
Killiany

2 80.60 [69.39; 88.39] 76.27 [63.83; 85.41] 0.798 0.945 

Destrieux   2 90.53 [60.38; 98.36] 84.96 [71.22; 92.80] 0.492 0.274 

EVE   1 73.33 [58.68; 84.19] 83.33 [65.68; 92.89] 0.563 0.593 

Glasser 1 53.35 [48.46; 58.17] 69.44 [65.12; 73.45] 0.114 0.851 

ICBM-DTI-81 1 21.43 [7.07; 49.43] 96.97 [81.39; 99.57] 0.011 0.090 

MSDL    1 90.82 [87.58; 93.28] 61.32 [56.83; 65.63] 0.401 0.561 

Multiple 9 83.70 [74.71; 89.93] 79.79 [69.57; 87.20] 0.930 0.466 

None 9 91.08 [81.22; 96.02] 90.91 [80.67; 96.00] 0.280 0.032 

Self-generated 3 86.41 [78.35; 91.78] 91.22 [48.56; 99.13] 0.650 0.556 

ML algorithm Linear 
Discriminant 
Analysis

1 91.11 [78.59; 96.62] 76.92 [47.85; 92.37] ref ref 

Support Vector 
Machine

18 86.04 [78.27; 91.34]   81.57 [73.16; 87.78] 0.636 0.847 

Neural Network 11 90.64 [78.37; 96.28] 88.67 [71.58; 96.05] 0.826 0.633 

Tree Based 
Algorithms

8 87.48 [69.86; 95.47] 85.80 [77.74; 91.27] 0.625 0.665 

Logistic 
Regression

2 72.02 [65.28; 77.90] 81.24 [74.46; 86.54] 0.311 0.767 

Naive Baayes 1 73.11 [64.45; 80.30] 58.02 [49.41; 66.16] 0.417 0.579 

https://cdn.fbsbx.com/v/t59.2708-21/166719818_821683702095443_7384472023400459887_n.pdf/Figure-5.pdf?_nc_cat=103&ccb=1-3&_nc_sid=0cab14&_nc_eui2=AeE8Ukly49rIuebFbHL51GLv_ofo0Kwls6b-h-jQrCWzphv71BuMWztua2QnAI2ppX8J8Ug74NJD9RQF2s7hSpum&_nc_ohc=M8y1mgKd4gEAX8q2l-A&_nc_ht=cdn.fbsbx.com&oh=984a5528eaeba1a6ab6713cee71e5685&oe=60794604&dl=1
https://cdn.fbsbx.com/v/t59.2708-21/166719818_821683702095443_7384472023400459887_n.pdf/Figure-5.pdf?_nc_cat=103&ccb=1-3&_nc_sid=0cab14&_nc_eui2=AeE8Ukly49rIuebFbHL51GLv_ofo0Kwls6b-h-jQrCWzphv71BuMWztua2QnAI2ppX8J8Ug74NJD9RQF2s7hSpum&_nc_ohc=M8y1mgKd4gEAX8q2l-A&_nc_ht=cdn.fbsbx.com&oh=984a5528eaeba1a6ab6713cee71e5685&oe=60794604&dl=1
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Multiple 3 80.95 [68.14; 89.41] 78.04 [70.88; 83.85] 0.541 0.818 

Validation 
method  

Intra-site CV 1 53.35 [48.46; 58.17] 69.44 [65.12; 73.45] ref ref 

k-fold CV 26 86.77 [78.72; 92.09] 82.02 [73.83; 88.07] 0.105 0.565 

Leave p-out CV 11 83.05 [77.20; 87.64] 85.29 [78.45; 90.23] 0.148   0.399 

Out-of-bag error 4 87.88 [80.99; 92.51] 83.98 [71.00; 91.83] 0.077 0.431 

Reference was chosen by the statistical program.  

FPR, false positive rate; ref, reference; Other abbreviations as in Table 1 and Table 2.  


