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Abstract
Purpose Isocitrate dehydrogenase (IDH) mutation and 1p19q codeletion status are important for managing glioma patients. However, 
current practice dictates invasive tissue sampling for histomolecular classification. We investigated the current value of dynamic 
susceptibility contrast (DSC) MR perfusion imaging as a tool for the non-invasive identification of these biomarkers.
Methods A systematic search of PubMed, Medline, and Embase up to 2023 was performed, and meta-analyses were con-
ducted. We removed studies employing machine learning models or using multiparametric imaging. We used random-
effects standardized mean difference (SMD) and bivariate sensitivity-specificity meta-analyses, calculated the area under 
the hierarchical summary receiver operating characteristic curve (AUC) and performed meta-regressions using technical 
acquisition parameters (e.g., time to echo [TE], repetition time [TR]) as moderators to explore sources of heterogeneity. For 
all estimates, 95% confidence intervals (CIs) are provided.
Results Sixteen eligible manuscripts comprising 1819 patients were included in the quantitative analyses. IDH mutant 
(IDHm) gliomas had lower rCBV values compared to their wild-type (IDHwt) counterparts. The highest SMD was observed 
for  rCBVmean,  rCBVmax, and rCBV  75th percentile (SMD≈ − 0.8, 95% CI ≈ [− 1.2, − 0.5]). In meta-regression, shorter TEs, 
shorter TRs, and smaller slice thicknesses were linked to higher absolute SMDs. When discriminating IDHm from IDHwt, 
the highest pooled specificity was observed for  rCBVmean (82% [72, 89]), and the highest pooled sensitivity (i.e., 92% [86, 
93]) and AUC (i.e., 0.91) for rCBV  10th percentile. In the bivariate meta-regression, shorter TEs and smaller slice gaps were 
linked to higher pooled sensitivities. In IDHm, 1p19q codeletion was associated with higher rCBVmean (SMD = 0.9 [0.2, 
1.5]) and rCBV  90th percentile (SMD = 0.9 [0.1, 1.7]) values.
Conclusions Identification of vascular signatures predictive of IDH and 1p19q status is a novel promising application of 
DSC perfusion. Standardization of acquisition protocols and post-processing of DSC perfusion maps are warranted before 
widespread use in clinical practice.

Keywords Dynamic susceptibility contrast (DSC) MR perfusion · Isocitrate dehydrogenase (IDH) · 1p19q codeletion · 
Glioma · Neuro-oncology · Systematic review · Meta-analysis
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Highlights  
• DSC perfusion shows great potential for the non-invasive 
molecular classification of gliomas.
• Studies without machine learning report encouraging albeit 
heterogeneous results.
• Technical parameters, mainly TE, can significantly affect 
classification accuracy.
• Perfusion metrics beyond rCBV hold promise for further 
enhancement of performance.
• Technical standardization of DSC perfusion remains 
fundamental for radiogenomics.
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Introduction

Gliomas represent the most common primary brain tumors 
[1]. Constant classification updates from the World Health 
Organization (WHO) reflect progressive insights into the 
biological behavior of this heterogeneous group of tumors 
[2]. Thus, the early histological division into low-grade 
(LGGs) and high-grade gliomas (HGGs) was gradually 
replaced by categories based on histological features and 
molecular biomarkers such as isocitrate dehydrogenase 
(IDH) mutation and 1p19q codeletion status [3]. In view 
of the importance of the glial genotype for patient man-
agement and prognosis, the current classification (WHO 
2021) attributes a pivotal role to IDH and 1p19q status 
for the discrimination between tumor subtypes (astrocy-
toma, IDH mutant [IDHm]; oligodendroglioma, IDHm 
and 1p19q codeleted; and glioblastoma, IDHm or IDH 
wild-type [IDHwt]) [2]. Thus, the identification of these 
biomarkers becomes crucial in the current landscape of 
clinical management of glioma patients.

The gold standard for establishing the IDH and 1p19q 
status is immunohistochemistry and genomic sequencing 
of histopathological tissue samples [4]. However, brain 
biopsy is invasive and despite recent advances remains 
prone to potential complications and sampling errors due 
to tumor heterogeneity [5]. Thus, an alternative non-inva-
sive tool to accurately predict IDH and 1p19q status within 
a whole tumor sample would be of high clinical value. 
To this end, different MRI modalities have been explored 
to non-invasively characterize IDH mutation and 1p19q 
codeletion status in gliomas [6]. These include conven-
tional MRI, diffusion-weighted imaging (DWI), magnetic 
resonance spectroscopy (MRS), and MR perfusion includ-
ing dynamic susceptibility contrast (DSC). The advent of 
machine learning for multiparametric MRI analysis has 
further expanded the capabilities of imaging for molecular 
subtyping [7–9].

Recent meta-analyses demonstrate a good performance 
for conventional MRI [6], MRS [10], amide proton transfer 
[11], dynamic contrast enhanced (DCE)/DSC MR perfu-
sion [12], and MRI radiomics [13] for molecular classifi-
cation. Although many individual studies employed DSC 
MR perfusion for the molecular characterization of glio-
mas, no systematic review or meta-analysis focused spe-
cifically on the potential methodological limitations of the 
technique. With the advent of novel treatments including 
IDH inhibitors [14, 15], the value of DSC MR perfusion 
may extend further than pre-treatment genotyping of glio-
mas, allowing treatment selection and surveillance through 
the identification of genotype-driven vascular signatures. 
Furthermore, at a time in which machine learning is trans-
forming this field via the integrated analysis of multiple 

modalities, scrutiny of the constitutional components of 
multiparametric MRI is imperative.

Our study aimed to investigate the added benefit of DSC 
MR perfusion for molecular subtyping of gliomas with 
an emphasis on methodological quality and moderators 
of classification performance. Therefore, studies applying 
multiparametric MRI analysis or machine learning were 
considered out of its scope. Specifically, this systematic 
review explored whether DSC perfusion can distinguish: 
(1) IDHm from IDHwt gliomas, (2) IDHm with 1p19q 
codeletion and IDHm without 1p19qcodeletion, and (3) 
investigate sources of heterogeneity and potential areas 
for methodological improvement. These were evaluated 
through random-effects standardized mean difference 
(SMD) and bivariate sensitivity–specificity meta-analy-
ses. In addition, we performed meta-regressions to explore 
which DSC acquisition parameters and applied perfusion 
metrics associate with better classification performance.

Methods

This systematic review was conducted in line with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
analysis (PRISMA) criteria [16]. Each step was conducted 
independently by two reviewers (LS and CT) and any dis-
crepancy was evaluated by a third senior reviewer (SB).

Search strategy

The research question was “what is the current perfor-
mance of DSC MR perfusion in identifying IDH muta-
tion and 1p19q codeletion status in glioma patients?”. To 
answer this question, a systematic literature search was 
performed on PubMed, Medline, and Embase to find rel-
evant publications between 01/01/2000 and 01/01/2023. 
The patient/intervention/comparator/outcomes (PICO) 
framework was used to define the search items: (P) = gli-
oma, glioblastoma, brain tumor/tumor, brain neoplasia/
neoplasm; (I) = dynamic susceptibility contrast, DSC, MR 
perfusion, brain perfusion; (C) = biopsy, histopathology, 
molecular profile, isocitrate dehydrogenase/IDH, 1p19q 
codeletion (and common variations such as 1p/19q, 
1p-19q, 1p 19q, codeletion, codeleted); and (O) = predict, 
identify, classify, stratify, subtype, categorize, character-
ize, assign, cluster, distinguish. The PICO framework 
categories were combined using “AND,” while variations 
within categories were combined via “OR.” The same 
search items combinations were used for all databases. 
Reference lists were also reviewed to identify further eli-
gible publications.
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Inclusion and exclusion criteria

The study selection process was conducted in EndNote X9. 
Eligibility criteria included peer-reviewed, English-written 
publications available through electronic indexation sat-
isfying the following conditions: (1) DSC was used as an 
index test to determine IDH mutation and/or 1p19q codele-
tion status; (2) histopathology with molecular profiling was 
employed as the reference standard; (3) all patients received 
both the index test and reference standard within a reason-
able timeframe with blinding of the evaluators.

Exclusion criteria were (1) studies employing multipara-
metric imaging, (2) the use of regression models incorporat-
ing additional covariates (e.g., sex, age) to predict IDH and 
1p19q status, (3) studies using machine learning, (4) very 
small studies (< 10 glioma patients), (5) pediatric studies, 
and (6) non-original research (e.g., case-reports, reviews, 
abstracts, conference presentations, book chapters).

Data extraction

LS and CT independently extracted data from both the 
manuscripts as well as the supplementary materials of the 
included studies using a standardized Microsoft Excel 2016 
spreadsheet previously agreed by all authors. We extracted 
data on (1) study design (retrospective vs. prospective), (2) 
participant characteristics (i.e., mean age, sex ratio, and 
ethnical breakdown), (3) glioma characteristics (i.e., grade 
and stage), (4) DSC imaging acquisition parameters (e.g., 
time to echo [TE], repetition time [TR], pulse sequence, field 
of view, slice thickness, slice gap, use of contrast preload, 
contrast dose), and (5) prefusion map post-processing (e.g., 
region of interest [ROI] selection, leakage correction, stand-
ardization/normalization methodology). In addition, we 
extracted DSC metrics (e.g., relative cerebral blood volume 
[rCBV]) in IDHwt, IDHm, IDHm with 1p19q codeletion 
and IDHm without 1p19q codeletion groups. Finally, we 
recorded the diagnostic accuracy for the prediction of IDH 
and 1p19q status (e.g., sensitivity, specificity, positive pre-
dictive value, negative predictive value). In general, there 
was a good agreement between LS and CT for both categori-
cal (Cohen’s Kappa 0.88) and continuous variables (intra-
class correlation coefficient: 0.92). The input of a senior 
reviewer (SB) was sought to resolve discrepancies.

Quality assessment

This systematic review’s quality was assured by the Quality 
Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) 
questionnaire in its original format [17]. Patient selection, 
study conduct, and interpretation of IDH and 1p19q status 

by DSC and histopathological analysis with molecular pro-
filing were appraised in line with the review question explor-
ing applicability concerns and risks of bias.

Statistical methods

All statistical analyses were performed using R version 
4.2.2 (packages “meta,” “metaphor,” and “mada”). A 
p-value < 0.05 was regarded as significant.

Heterogeneity between studies was assessed using 
Cochran’s Q and Higgins I2 statistics. A Cochran’s Q 
test with a p-value < 0.05 or I2 > 50% were interpreted 
as potentially indicative of the presence of heterogeneity 
[18]. Regardless of the degree of heterogeneity, a random-
effects model was used for all meta-analyses. In addition, 
meta-regression was conducted to explore sources of het-
erogeneity in any meta-analysis including at least 4 studies. 
Evaluated moderator variables included continuous (contrast 
dose, TE, TR, slice thickness, slice gap, acquisition time) 
and categorical variables (contrast type, pulse sequence, ROI 
selection, DSC standardization/normalization, analysis soft-
ware, arterial input function [AIF] and the use of leakage 
correction).

Publication bias was assessed via the visual inspection 
of contour-enhanced funnel and Egger’s test. Asymmetri-
cal funnel plots or Egger’s test p < 0.05 were interpreted as 
potentially indicating the possibility of publication bias [19].

Standardized mean difference meta‑analysis

We performed comparisons between IDHm and IDHwt for 
different combinations of WHO grades including grade 2, 
grade 3, grade 4, and across all WHO grades. In addition, we 
compared IDHm with 1p19q codeletion vs. IDHm without 
1p19q codeletion. Firstly, we extracted the mean, standard 
deviation (SD), and the number of glioma patients in each of 
the groups described above for each available DSC metric. 
As the measurement scales differed between the studies, we 
performed the comparisons by calculating the SMDs and 
their 95% confidence intervals [CIs] [20].

Diagnostic accuracy meta‑analysis

In this analysis, we included all studies which reported 
enough metrics enabling the computation of true positives 
(TP), true negatives (TN), false positives (FP), and false 
negatives (FN).

We used validated diagnostic test accuracy meta-analysis 
methodology to calculate the pooled sensitivity and speci-
ficity [21]. Given the inter-dependence of sensitivity and 
specificity, a bivariate model was used to generate the hierar-
chical summary receiver operating characteristic (HSROC) 
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curve with its 95% confidence region and to compute the 
area under the ROC curve (AUC) [22].

In addition, we computed the pooled diagnostic odds 
ratios (DORs), positive likelihood ratios (PLRs), and nega-
tive LRs (NLRs) and their 95% CIs. DOR represents the 
odds of the IDH mutation being correctly identified by DSC. 
PLR captures the ratio of the probability that DSC predicts 
an IDH mutation in IDHm vs IDHwt (i.e., LR for positive 
results). In contrast, NLR represents the LR for negative 
results.

Results

Database search

A PRISMA flow chart of the database search process is pre-
sented in Fig. 1. Briefly, the initial search identified 352 
potential articles. After removing duplicates and screening 
abstracts against our research question, we further consid-
ered 102 papers. Following the application of our inclusion 
and exclusion criteria, 16 manuscripts were included in the 
quantitative analysis [23–38]. The characteristics of these 
studies were extracted and tabulated in Table 1.

Quality assessment

Overall, the 16 studies included in the quantitative analysis 
were of a high methodological quality.

The QUADAS-2 spreadsheet summarizing our evaluation 
for each questionnaire item for each of the included studies 
is provided in Supplementary Material 1. The risk of bias 
was evaluated in the patient selection, index test, reference 
standard, and flow and timing domains according to the 
QUADAS-2 questionnaire (Fig. 2). In the patient selection 
domain, 13% of studies did not provide enough information 
on their exclusion criteria and 13% might have made inap-
propriate exclusions (e.g., excluding individuals for whom 
a full molecular profile besides IDH status was not avail-
able). The risk of bias in the index test domain was assessed 
as unclear in 44% of studies, which did not explicitly state 
that neuroradiologists were blinded to IDH mutation status. 
Although 75% of studies did not specify the interval between 
the MR perfusion and biopsy, the risk of bias was considered 
low given that IDH mutation status is unlikely to change in 
a relatively short timeframe. Applicability concerns were 
also evaluated in the patient selection, index test, and refer-
ence standard domains. The were no applicability concerns 
by design as such studies would be filtered by our exclusion 
criteria.

Fig. 1  Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) flow chart of study selection process
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Differentiating IDHm from IDHwt regardless of WHO 
grade

The most commonly used DSC metric when comparing 
IDHm vs. IDHwt was  rCBVmean. The SMD meta-analysis 
results are presented in Table 2, while the diagnostic accu-
racy meta-analysis results are summarized in Table 3.

When attempting to differentiate IDHm from IDHwt, the 
highest pooled sensitivity was achieved by rCBV  10th per-
centile (92%, 95% CI: [86, 93]) (Table 3), and the highest 
pooled specificity by rCBVmean (82% [72, 89]) (Fig. 3). 
Although the highest diagnostic performance was observed 
for rCBV  10th percentile (DOR = 20.96 [2.34–187.95], 
AUC = 0.91), this analysis included only 2 studies. In gen-
eral, the heterogeneity between the studies was substantial 
(i.e., I2 > 50%, Cochran’s Q p < 0.05) except for rCBV  75th 
percentile sensitivity (I2 = 42%, p = 0.068) and specific-
ity (I2 = 50%, p = 0.318), rCBV  25th percentile specificity 
(I2 = 0%, p = 0.552) and rCBV  10th percentile sensitivity 
(I2 = 0%, p = 0.423) analyses.

According to the SMD meta-analysis, IDHm consist-
ently had higher rCBV values across all DSC metrics 
compared to their IDHwt counterparts except for rCBV 
 10th percentile where the difference was not statisti-
cally significant. The highest SMDs were observed for 
 rCBVmean (SMD =  − 0.8 [− 1.1, − 0.5]) (Fig. 3),  rCBVmax 
(SMD =  − 0.8 [− 1.2, − 0.5]), and rCBV  75th percentile 
(SMD =  − 0.8 [− 1.2, − 0.5]) (Table 2). In contrast to the 
sensitivity and specificity meta-analyses, heterogeneity 

was generally low except for the  rCBVmean (I2 = 78%, 
p < 0.001) and rCBV  10th percentile (I2 = 84%, p = 0.013) 
analyses. In general, the Egger tests and the visual inspec-
tion of the contour-enhanced funnel plots suggested a low 
possibility of publication bias (Figs. 4 and 5).

Differentiating IDHm from IDHwt in WHO grade 
subgroups

The SMD meta-analysis results are presented in Table 2, 
and the diagnostic accuracy meta-analysis results are 
summarized in Table 3.rCBVmean was lower in grade 2 
IDHm compared to grade 2 IDHwt tumors (SMD =  − 1.1 
[− 2.0, − 0.2]), however with considerable heterogeneity 
(I2 = 72%, p = 0.027) and possibility of publication bias 
(Egger test p-value = 0.017).

In grade 3 gliomas,  rCBVmean was lower in IDHm 
(SMD =  − 0.5 [− 0.2, − 0.8]). For predicting IDH status, 
 rCBVmean yielded a pooled sensitivity of 83% [60, 94], a 
pooled specificity of 95% [74, 99], and an AUC of 0.88. 
The heterogeneity and possibility of publication bias were 
low.

In grade 4 gliomas,  rCBVmean differentiated IDHm 
from IDHwt with a pooled sensitivity of 82% [55, 95] 
and pooled specificity of 96% [69, 100] yielding an 
AUC = 0.84. Indeed,  rCBVmean was lower in IDHm vs 
IDHwt (SMD =  − 0.5 [− 0.9, − 0.1]). The heterogeneity 
and possibility of publication bias were also low.

Fig. 2  QUADAS-2 questionnaire: quality assessment results. Accord-
ing to QUADAS-2, risk of bias is assessed across four domains 
(patient selection, index test, reference standard, and flow and tim-

ing), while applicability concerns are assessed in only the first three 
domains. QUADAS-2 Quality Assessment of Diagnostic Accuracy 
Studies-2
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Table 2  Standardized mean difference (SMD) meta-analysis

* Egger’s test was used only when there were more than two studies in that category
CI confidence interval, rCBV relative cerebral blood volume, SMD standardized mean difference. Other abbreviations as in Table 1

DSC metric Number 
of stud-
ies

Sample size Heterogeneity Effect size Egger’s test*

I2 Cochran’s Q test
p-value

SMD (95% CI) p-value p-value

IDH mutant: all 
WHO grades

IDH wild-type: all 
WHO grades

   rCBVmean 8 379 635 77.95% 0.0002  − 0.80 
(− 1.13, − 0.47)

 < 0.0001 0.877

   rCBVmedian 4 171 237 40.91% 0.150  − 0.52 
(− 0.81, − 0.23)

 < 0.0001 0.367

   rCBVmax 3 61 125 0.00% 0.416  − 0.80 
(− 1.15, − 0.45)

 < 0.0001 0.750

  rCBV 95th 2 190 383 11.60% 0.288  − 0.64 
(− 0.84, − 0.43)

 < 0.0001 N/A

  rCBV 90th 2 136 126 52.54% 0.120  − 0.73 
(− 1.12, − 0.35)

 < 0.0001 N/A

  rCBV 75th 2 67 121 0.00% 0.324  − 0.81 
(− 1.16, − 0.47)

 < 0.0001 N/A

  rCBV 25th 2 67 121 30.51% 0.230  − 0.71 
(− 1.13, − 0.28)

0.001 N/A

  rCBV 10th 2 71 81 83.77% 0.013  − 0.34 (− 1.23, 
0.55)

0.457 N/A

IDH mutant: WHO 
2

IDH wild-type: 
WHO 2

   rCBVmean 3 66 37 72.23% 0.027  − 1.10 
(− 1.98, − 0.22)

0.015 0.017

IDH mutant: WHO 
3

IDH wild-type: 
WHO 3

   rCBVmean 4 114 97 18.10% 0.174  − 0.52 
(− 0.79, − 0.24)

0.0003 0.631

   rCBVmedian 3 23 22 54.64% 0.111  − 0.10 (− 0.84, 
0.64)

0.786 0.046

  rCBV 90th 2 36 32 28.65% 0.237  − 0.57 (− 1.31, 
0.17)

0.237 N/A

  rCBV 10th 2 23 22 74.07% 0.049  − 0.02 (− 1.28, 
1.24)

0.976 N/A

IDH mutant: WHO 
4

IDH wild-type: 
WHO4

   rCBVmean 4 47 337 19.08% 0.203  − 0.51 
(− 0.89, − 0.13)

0.009 0.734

   rCBVmedian 3 13 46 0.00% 0.536  − 0.36 (− 0.84, 
0.12)

0.137 0.760

  rCBV 90th 2 23 71 0.00% 0.850  − 0.60 (− 1.23, 
0.03)

0.061 N/A

  rCBV 10th 2 13 46 22.44% 0.256  − 0.39 (− 1.10, 
0.33)

N/A

IDH mutant: 1p 
19q codeletion

IDH mutant: 1p 
19q no codeletion

   rCBVmean 3 85 66 69.35% 0.031 0.89 (0.24, 1.53) 0.007 0.633
   rCBVmedian 2 89 85 82.20% 0.018 0.77 (− 0.18, 1.71) 0.112 N/A
   rCBVmax 2 69 50 53.89% 0/141 0.30 (− 0.25, 0.84) 0.282 N/A
  rCBV 90th 2 69 50 73.90% 0.050 0.92 (0.13, 1.71) 0.022 N/A
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Differentiating IDHm with 1p19q codeletion 
from IDHm without 1p19q codeletion

The SMD meta-analysis results are presented in Table 2. A 
diagnostic accuracy meta-analysis was not performed due to 
a lack of studies. IDHm with 1p19q codeletion demonstrated 

higher  rCBVmean compared to IDHm without 1p19q code-
letion (SMD = 0.9 [0.2, 1.5]). A higher rCBV  90th percen-
tile was also observed in IDHm with 1p19q codeletion 
(SMD = 0.9 [0.1, 1.7]). Heterogeneity between the studies 
was high (all I2 > 50%, all p < 0.05) albeit the possibility of 
publication bias was low (Egger test p-value = 0.633).

Fig. 3  Forest plots for the random-effects rCBVmean meta-analyses 
of IDH mutant vs. IDH wild-type gliomas for: A sensitivity, B speci-
ficity, and C SMD (panel C). CI, confidence interval; IDH, isocitrate 

dehydrogenase; rCBV, relative cerebral blood volume; p, p-value; RE, 
random-effects; SMD, standardized mean difference; TN, true nega-
tive; TP, true positive

Fig. 4  Contour-enhanced funnel 
plot for the standardized mean 
difference  rCBVmean meta-
analysis of IDH mutant gliomas 
vs. IDH wild-type gliomas. 
Abbreviations as in Fig. 3
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Meta‑regression

The meta-regression results for the SMD analysis are pre-
sented in Supplementary Table S1, and for the diagnostic 
accuracy analysis in Supplementary Table S2 from Supple-
mentary Material 2.

Shorter TEs were associated with higher absolute SMDs 
for  rCBVmean (i.e., greater absolute difference between IDHm 
and IDHwt) which translated into higher pooled sensitivi-
ties (for a 1 ms decrease in TE, the sensitivity increased by 
0.1) in the bivariate sensitivity-specificity model. Similarly, 
shorter TRs increased the absolute SMDs between IDHm and 
IDHwt for  rCBVmean (for a 1 ms increase in TR, the absolute 
value of SMD increased by 0.001), however without signifi-
cant increase in diagnostic accuracy (both p > 0.100). Smaller 
slice thicknesses were associated with higher absolute SMDs 
for  rCBVmedian, while smaller slice gaps were associated with 
higher pooled sensitivities and specificities for  rCBVmean.

In general, DSC metrics were usually calculated either 
based on manual hotspot or manual total enhancing tumor area 
ROIs. Studies using hotspot ROIs obtained a higher sensitivity 
(98% [87, 100]) at the cost of lower specificity (63% [49, 75]) 
for distinguishing IDHm from IDHwt using  rCBVmean.

No other moderator was associated with study heteroge-
neity in any of the remaining meta-regressions.

Discussion

This study suggests that DSC MR perfusion has a promis-
ing diagnostic performance for the non-invasive prediction 
of IDH mutation and 1p19q codeletion status in gliomas. 

Despite the inter-study heterogeneity, most studies reported 
sensitivities > 85% and specificities > 75% in distinguish-
ing IDHm from IDHwt. For IDH mutation prediction, the 
most widely employed metric namely normalized  rCBVmean, 
yielded a pooled sensitivity of 79% [57–92] and a polled 
specificity of 82% [72–89] respectively. IDHm had a lower 
 rCBVmean compared to their wild-type counterparts across 
all WHO grades. In IDHm, 1p19q codeletion associated with 
a higher  rCBVmean compared to 1p19q retained tumors. Esti-
mation of cut-off values for DSC metrics was not possible 
based on our analysis given the heterogeneity in methodol-
ogy. As a step towards protocol standardization, we describe 
acquisition parameter trends associated with an increased 
discriminatory performance: shorter TEs, shorter TRs, 
smaller slice thickness, and smaller slice gaps.

MR perfusion is well suited to predict IDH and 1p19q 
status in gliomas as it captures their genetically determined 
vascular habitats. Indeed, Kickingereder et al. [28] identi-
fied a link between specific hypoxia-angiogenesis transcrip-
tome signatures and vascular phenotypes on DSC perfu-
sion. IDHm were shown to have decreased activation of the 
hypoxia inducible factor 1A, which in turn rendered these 
tumors less prone to hypoxia induced angiogenesis com-
pared to their wild-type counterparts. Therefore, decreased 
 rCBVmean values are expected in IDHm versus IDHwt, as 
demonstrated by multiple studies and confirmed by our 
meta-analysis.

The propensity of DSC perfusion to identify such vas-
cular phenotypes may allow clinical applications extending 
beyond pre-treatment stratification, to treatment selection 
and post-treatment surveillance. Despite current trends 
favoring surgical management of gliomas, the advent of 

Fig. 5  HSROC curve of the 
diagnostic performance of rCB-
Vmean in differentiating IDH 
mutant gliomas vs. IDH wild-
type gliomas. False-positive rate 
is plotted against the sensitiv-
ity for all studies to yield the 
hierarchical summary receiver 
operating characteristic curve. 
Youden’s J index represents the 
optimum cut-off between sensi-
tivity and specificity. The 95% 
confidence region of the diag-
nostic performance of  rCBVmean 
in differentiating IDH mutant 
from IDH wild-type gliomas 
is presented in red. HSROC, 
hierarchical summary receiver 
operating characteristic. Other 
abbreviations as in Fig. 3
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novel targeted treatments including IDH inhibitors, holds 
promise for a future paradigm shift. Brain-penetrant IDH 
inhibitors such as vorasidenib showed tumor suppressing 
effects in laboratory studies and demonstrated adequate 
safety in phase 1 clinical trials [14, 15, 39]. In addition, a 
vaccine with an IDH1 epitope has been developed [40] and 
demonstrated safety in clinical trials, making it an excit-
ing potential therapy for IDHm tumors [41]. In this context, 
non-invasive prediction of IDH mutation status could aid 
treatment selection, especially for inoperable tumors such 
as brainstem gliomas [42]. Similarly, prediction of 1p19q 
codeletion status would favor patient stratification and prog-
nostication, according to the current clinical management 
guidelines [43]. Genotype-driven perfusion signatures can 
be monitored during treatment, enabling assessment of new 
therapies in clinical trials and post-treatment, improving sur-
veillance of patients. Recent studies report IDH dependent 
vascular trends revealing tumor recurrence using DSC per-
fusion [44, 45], which could partly explain shortcomings in 
predicting disease progression based on prior classifications.

Comparative diagnostic performance

Multiple studies support the value of MRI for molecular 
classification of gliomas. DSC perfusion performs within 
the range of most investigated techniques, however, lacks in 
diagnostic performance compared to MRS. According to a 
systematic review [6], brain MRI yields a pooled sensitivity 
and specificity of 86% [79, 91] and 87% [78, 92] respec-
tively. However, the review included studies employing dif-
ferent MRI techniques (e.g., MR diffusion, MR perfusion) 
with heterogeneous acquisition and post-processing proto-
cols. A recent meta-analysis suggested that both DCE and 
DSC perfusion have a similarly satisfactory performance 
in establishing IDH mutation status with the highest AUC 
obtained for CBV (0.85 [0.75–0.93]) and extravascular space 
(Ve; 0.84 [0.71–0.97]) [46]. Our findings on the performance 
of DSC perfusion are consistent with the results published 
in this meta-analysis. However, our analysis addressed areas 
not reported by the latter study including (1) pooled sensi-
tives and specificities for glioma classification, (2) pooled 
estimates for each DSC perfusion metric, and (3) meta-
regression of performance moderators. Despite the promis-
ing results on the use of MR perfusion, the highest diagnos-
tic performance to date was reported for 2-hydroxyglutarate 
(2HG) MRS which was shown to have a pooled sensitivity 
of 95% [85, 98] and specificity of 91% [83, 96] across 14 
studies [10].

Despite differences in performance compared to MRS, 
we propose that DSC perfusion holds promise for predict-
ing IDH and 1p19q status in gliomas, and that the value 
of these modalities lies not in their differences but in their 

complementary nature. Specifically, while MRS allows 
direct characterization of IDH mutation status via the iden-
tification of downstream biomarkers (e.g., 2HG), DSC per-
fusion identifies vascular phenotypes associated with this 
mutation. Both features have been independently proven to 
hold clinical value for pre-treatment stratification and post-
treatment surveillance. The potential value of combining 
these techniques has been highlighted by previous studies 
on glioma grading [47, 48]. Therefore, the complementary 
nature of these modalities may offer unprecedented capa-
bilities for pre-treatment patient stratification and especially 
for post-treatment surveillance. To this end, the combined 
techniques may allow longitudinal assessment of tumor cel-
lularity and oncometabolites by MRS, and changes in tumor 
vascularity by DSC perfusion. Furthermore, although 2HG 
MRS demonstrates a good performance, the technique also 
poses challenges related to acquisition and post-processing 
[49]. Such limitations potentially surpass those of DSC per-
fusion, with recent studies reporting wider clinical adop-
tion of DSC compared to MRS [50]. Our meta-regression 
analysis also indicates potential underestimation of DSC 
perfusion performance attributed to technical heterogeneity 
and choice of perfusion metrics, and highlights areas for 
improvement.

Heterogeneity–standardization

Our study highlights the lack of DSC MR perfusion protocol 
standardization and suggests specific technical parameters 
contributing to heterogeneity. Specifically, shorter TEs and 
smaller slice gaps were associated with higher sensitivities 
in the bivariate sensitivity-specificity model, while shorter 
TEs, shorter TRs, and smaller slice thicknesses were linked 
to higher absolute SMDs between IDHm and IDHwt. The 
need for standardization of DSC MR perfusion is widely 
recognized, and our results highlight important technical 
considerations for improved diagnostic performance. Across 
both the SMD and diagnostic performance meta-regressions, 
TE was the only consistent metric associated with heteroge-
neity. The effects of TE in the quality of quantitative analy-
sis of DSC perfusion have been previously described. In 
accordance with our findings, previous studies highlighted 
the limitations of long TEs likely due to saturation of the 
arterial input signal. To overcome this limitation, dual-
echo and more recently multi-echo techniques have been 
proposed for the optimization of DSC perfusion [51, 52]. 
However, TE influences DSC perfusion in conjunction with 
multiple parameters, including flip angle, slice thickness, 
and contrast pre-load [52–54]. Using DSC perfusion simula-
tions, Leu et al. [54] examined the effects of such acquisi-
tion parameters to the “faithful” estimation of rCBV. In an 
exploratory manner, we assessed the rCBV estimation error 
of the included papers with adequate protocol information, 
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based on the published heat map diagram [54]. Based on this 
predictive model, many of the included studies would yield 
higher rCBV estimation errors compared to the optimized 
acquisition parameters [23, 25, 32, 34, 38]. In contrast, stud-
ies with optimized parameters would be expected to yield 
lower rCBV estimation errors and, interestingly, predomi-
nantly reported higher classification performance [26, 28, 
30, 35]. For example, the study by Kickingereder et al. [28], 
predicted to yield the minimum rCBV estimation error, cor-
rectly classified 88% of tumors using rCBV  90th percentile 
(accuracy range: 82–88% for all percentiles). Such an assess-
ment of methodological quality is limited since it requires 
complete protocol and post-processing data which are not 
available for all studies and thus does not allow appropri-
ate comparisons. However, it can be postulated that errors 
in estimating rCBV may influence the classification per-
formance of DSC perfusion and this insight can highlight 
areas for optimization of the technique. In addition, when 
using a shorter TR, the  T1 of blood is minimized allow-
ing for more accurate measurements of rCBV which may 
better expose the subtle differences in perfusion between 
IDHm and IDHwt. Lastly, smaller slice thicknesses and slice 
gaps would increase the image resolution. This would mag-
nify any existing differences in glioma vascular signatures 
between IDHm vs. IDHwt leading to a better discrimina-
tive power of DSC. However, this obviously comes at the 
expense of longer acquisition times.

Perfusion metrics—novel methodologies

A wide range of DSC metrics were reported by the included 
studies (Tables 2 and 3). Although  rCBVmean was the most 
widely employed, it may not be the optimal metric for cap-
turing the vascular signatures of gliomas. Indeed, Choi et al. 
[24] suggested that specific segments of the signal intensity 
time curve may exhibit a better predictive performance for 
IDH mutation status. More specifically, IDHwt demon-
strated a steeper downslope of signal intensity in the ini-
tial parts of the curve and less steep upslope in the region 
of signal recovery. Such minute temporal discriminatory 
features may be lost when using aggregate metrics such as 
 rCBVmean. A novel metric might be the percentage signal 
recovery ratio (PSR) which better characterizes the DSC 
signal intensity curve and was successfully employed for 
IDHm status prediction [25]. Similarly, M-enhanced analysis 
of the DSC signal intensity curve is also an exciting prospect 
[9]. The low number of studies employing such metrics or 
methodologies prevented us from conducting meta-analyses. 
However, these innovations warrant further research and 
external validation.

Studies employing histogram analysis of DSC perfu-
sion maps reveal histogram features as potential predic-
tors of IDHm status [8, 27, 29]. Despite the smaller sample 

sizes, our findings highlight the discriminative value of the 
extreme rCBV percentiles for IDH prediction. When distin-
guishing IDHm from IDHwt, the highest sensitivities were 
observed for rCBV  10th (i.e., 92% [86, 96]),  75th (i.e., 91% 
[80, 96]) and  90th percentiles (i.e., 88% [62, 97]). Thus, the 
use of histogram features for predicting IDH status warrants 
further investigation.

Radiogenomics and machine learning

Radiogenomics introduce further capabilities for non-
invasive glioma genotyping. This is highlighted by a recent 
systematic review which reported a high diagnostic per-
formance (i.e., pooled sensitivities > 90% and pooled spe-
cificities > 87%) for both the prediction of IDH and 1p19q 
status [13]. By applying advanced machine learning models 
to imaging techniques such as DSC perfusion, there is a 
potential for improved performance in genotype status pre-
diction [8]. However, benefits may extend beyond glioma 
genotyping to precision treatment selection and patient sur-
veillance through the identification of independent vascular 
profiles. Recent studies demonstrate this capability, with 
promising outcomes for metrics beyond rCBVmean [24–26, 
28]. Such applications would further benefit from improved 
DSC acquisition protocols as optimized parameters associ-
ating with a higher discriminative performance may have 
synergistic effects with the machine learning models. This 
highlights the importance of this study, as we characterize 
acquisition parameter trends associated with a higher diag-
nostic performance in distinguishing IDHm from IDHwt.

Limitations

Despite utilizing robust methodologies and performing 
stratified random-effects meta-analyses, our study has sev-
eral limitations. Firstly, we did not prospectively register the 
study protocol in a systematic review database such as the 
International Prospective Register of Systematic Reviews 
(PROSPERO). Prior registration is considered to increase 
transparency and reduce the likelihood of bias. Also, assess-
ment of the performance of DSC perfusion in grading glio-
mas posed inherent limitations due to the inclusion of studies 
prior the transition to the current 2021 WHO classification. 
Although we believe our results on glioma grading provide 
insights in the value of DSC perfusion in predicting perfu-
sion phenotypes related to microvascular proliferation and 
necrosis, they are insufficient to assess grading in accord-
ance with current criteria, which remains to be investigated. 
Furthermore, we did not include studies employing machine 
learning–enhanced DSC perfusion since their methodology 
would not allow the assessment of DSC in isolation. Simi-
larly, we did not explore the role of other MR perfusion tech-
niques such as DCE or arterial spin labeling which might be 
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better suited for non-invasive glioma genotyping. Consider-
able inter-study heterogeneity was identified by our analysis, 
and this prevented us from providing generalizable cut-off 
values to distinguish IDHm from IDHwt, and IDHm with 
1p19q codeletion and IDHm without 1pq19q codeletion. 
To explore sources of heterogeneity, we performed meta-
regression which highlighted moderator variables associated 
with a higher discriminatory performance for meta-analyses 
including at least 4 studies. However, the number of studies 
in most meta-analyses and meta-regressions was small. The 
latter limits the generalizability of our findings and warrants 
further investigation. Similarly, limitations in the number of 
studies precluded a diagnostic accuracy meta-analysis for 
the prediction of 1p19q codeletion status in IDHm, which 
remains a relevant research question.

Research directions

Our study indicates a promising diagnostic performance 
of DSC perfusion for the non-invasive prediction of IDH 
mutation and 1p19q codeletion status, and subsequently for 
glioma grading based on the current WHO classification. We 
propose that limitations in diagnostic performance may not 
reflect inherent inadequacies of DSC perfusion. Rather, this 
is potentially attributed to the heterogeneity in acquisition 
protocols and post-processing as well as to limitations of 
commonly used perfusion metrics which fail to capture the 
dynamic properties of the signal-intensity curve. Research 
on optimization DSC perfusion protocols and on alterna-
tive novel perfusion metrics beyond rCBV may open new 
horizons for the clinical applications of DSC. This may not 
be limited to pre-treatment subtyping of gliomas, but could 
extend to personalized treatment selection and post-treat-
ment surveillance. Machine learning can further enhance 
such capabilities and, in addition, allow the incorporation of 
multiparametric data from complementary advanced tech-
niques (e.g., MRS).

Conclusions

DSC perfusion shows a great potential in predicting IDH 
mutation and 1p19q codeletion status in gliomas. Hetero-
geneity in acquisition and post-processing warrants fur-
ther research prior its wide adoption; however, previously 
unexamined aspects of the technique offer new prospects 
for enhancing its capabilities in clinical neuro-oncology. 
Technical standardization and optimization of DSC per-
fusion remain fundamental in the era of machine learning 
enhanced radiogenomics.
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Clinical importance Classification of brain tumors increasingly 
incorporates molecular and genetic biomarkers. Currently, histological 
characterization of isocitrate dehydrogenase (IDH) mutation and 1p19q 
codeletion status are pivotal for glioma classification and clinical 
management. MRI shows promise for non-invasively predicting these 
biomarkers and MR perfusion has the propensity to link tumor vascular 
signatures with specific genotypes. This systematic review and meta-
analysis suggests that Dynamic Susceptibility Contrast (DSC) MR 
perfusion is an exciting prospect for predicting IDH mutation and 1p19q 
codeletion status in gliomas. IDH mutated (IDHm) tumors exhibited 
decreased relative cerebral blood volume (rCBV) compared to their wild-
type counterparts (IDHwt). In IDHm, 1p19q codeletion was associated 
with higher rCBV values. The heterogeneity in the classification 
performance may be partly explained by the lack of acquisition protocol 
standardization. Indeed, shorter time to echo and repetition times, and 
smaller slice thicknesses and gaps may improve the performance of DSC 
in distinguishing IDHm from IDHwt. These findings showcase the need 
for standardization of acquisition protocols and the potential of optimizing 
MR perfusion towards improved in vivo classification of gliomas.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Loizos Siakallis1,2 · Constantin‑Cristian Topriceanu1,2,3  · Jasmina Panovska‑Griffiths4,5 · Sotirios Bisdas2,6

 * Loizos Siakallis 
 loizos.siakallis.20@ucl.ac.uk

1 University College London (UCL) Queen Square Institute 
of Neurology, London, UK

2 Lysholm Department of Neuroradiology, The National 
Hospital for Neurology and Neurosurgery, University College 
London Hospitals (UCLH) NHS Foundation Trust, London, 
UK

3 UCL Institute of Cardiovascular Science, University College 
London, London, UK

4 The Big Data Institute and the Pandemic Sciences Institute, 
Nuffield Department of Medicine, University of Oxford, 
Oxford, UK

5 The Queen’s College, University of Oxford, Oxford, UK
6 Department of Brain Repair & Rehabilitation, Queen Square 

Institute of Neurology, University College London, London, 
UK

https://doi.org/10.1186/s13244-022-01230-7
http://orcid.org/0000-0001-5826-9617

	The role of DSC MR perfusion in predicting IDH mutation and 1p19q codeletion status in gliomas: meta-analysis and technical considerations
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Search strategy
	Inclusion and exclusion criteria
	Data extraction
	Quality assessment
	Statistical methods
	Standardized mean difference meta-analysis
	Diagnostic accuracy meta-analysis

	Results
	Database search
	Quality assessment
	Differentiating IDHm from IDHwt regardless of WHO grade
	Differentiating IDHm from IDHwt in WHO grade subgroups
	Differentiating IDHm with 1p19q codeletion from IDHm without 1p19q codeletion
	Meta-regression

	Discussion
	Comparative diagnostic performance
	Heterogeneity–standardization
	Perfusion metrics—novel methodologies
	Radiogenomics and machine learning
	Limitations
	Research directions

	Conclusions
	Anchor 31
	References


