3,050 research outputs found

    Sudbury project (University of Muenster-Ontario Geological Survey): Field studies 1984-1989 - summary of results

    Get PDF
    In cooperation between the Ontario Geological Survey and the Institute of Geology and Institute of Planetology, geological, petrological, and geochemical studies were carried out on impact-related phenomena of the Sudbury structure during the last decade. The main results of the field studies are briefly reviewed. Footwall rocks, sublayer, and lower sections of the Sudbury Igneous Complex (SIC) were mainly mapped and sampled in the northern (Levack Township) and western (Trillabelle and Sultana Properties) parts of the north range. Within these mapping areas Sudbury Breccias (SB) and Footwall Breccias (FB) were studied; SB were also investigated along extended profiles beyond the north and south ranges up to 55 km from the SIC. The Onaping Formation (OF) and the upper section of the SIC were studied both in the north range (Morgan and Dowling Townships) and in the southern east range (Capreol and McLennan Townships)

    Sudbury project (University of Muenster-Ontario Geological Survey): Summary of results - an updated impact model

    Get PDF
    In 1984 the Ontario Geological Survey initiated a research project on the Sudbury structure (SS) in cooperation with the University of Muenster. The project included field mapping (1984-1989) and petrographic, chemical, and isotope analyses of the major stratigraphic units of the SS. Four diploma theses and four doctoral theses were performed during the project (1984-1992). Specific results of the various investigations are reported. Selected areas of the SS were mapped and sampled: Footwall rocks; Footwall breccia and parts of the sublayer and lower section of the Sudbury Igneous Complex (SIC); Onaping Formation and the upper section of the SIC; and Sudbury breccia and adjacent Footwall rocks along extended profiles up to 55 km from the SIC. All these stratigraphic units of the SS were studied in substantial detail by previous workers. The most important characteristic of the previous research is that it was based either on a volcanic model or on a mixed volcanic-impact model for the origin of the SS. The present project was clearly directed toward a test of the impact origin of the SS without invoking an endogenic component. In general, our results confirm the most widely accepted stratigraphic division of the SS. However, our interpretation of some of the major stratigraphic units is different from most views expressed. The stratigraphy of the SS and its new interpretation is given as a basis for discussion

    Biomarker Discovery In Chronic Obstructive Pulmonary Disease (COPD) Using Epithelial Lining Fluid:A Proteomic Approach

    Get PDF
    RATIONALE Chronic Obstructive Pulmonary Disease (COPD) is the third most frequent disease worldwide with increasing mortality. Cigarette smoking is the principle risk factor and 15-20% of smokers develop COPD. Epithelial Lining Fluid (ELF) covers the internal part of the airways and can be collected during bronchoscopy. ELF appears to be well-suited for proteomic analysis, since it contains a higher concentration of proteins (150-300 μg /mL) than other lung fluids and can be obtained from different locations of the lungs. No comprehensive proteomic analysis of human ELF has been performed to date, which makes ELF a highly interesting fluid for biomarker discovery in COPD. AIM To discover proteins that change in abundance in ELF from COPD patients versus healthy controls using a quantitative proteomics approach. METHODS The ELF proteome from COPD patients and healthy controls was studied by 1D polyacrylamide gel electrophoresis in the presence of SDS followed by in-gel tryptic digestion to establish the methodology and assess the feasibility of such an approach. Approximately 40 gel slices were obtained from each lane of the gel (corresponding to one patient). Digested samples were analyzed by nanoChip-LC-MS/MS using an ion trap. We performed a quantitative pilot study of ELF from 4 COPD patients and 4 healthy controls (table 1) to test for statistically significant differences in protein levels. ELF samples were digested by trypsin, labeled with stable isotope-containing reagents (iTRAQ®, 8-plex) and processed by strong cation-exchange chromatography followed by nanoLC-MS/MS. In order to validate the results, a second quantitative analysis of an independent sample set (4 COPD vs 4 healthy) using the same methodological approach was done. RESULTS The 1D electrophoretic approach resulted in more than 300 identified proteins. Most of the identified proteins were present in both COPD and healthy samples, although some proteins were only identified either in healthy control or in COPD samples. The quantitative studies showed that a number of proteins was significantly different between ELF of COPD patients and controls, including 4 up-regulated proteins in common in both studies. CONCLUSIONS This is the first study in ELF of COPD patients and healthy controls in which such a large number of proteins has been identified. The obtained results show the feasibility of this proteomic approach and the possibility to discover proteins that are differentially expressed in ELF of COPD patients and controls. We are currently validating these proteins further by western blot and immunohistochemistry

    Generalised Lyndon-Schützenberger Equations

    Get PDF
    We fully characterise the solutions of the generalised Lyndon-Schützenberger word equations u1u=v1cdotsvmw1wnu_1 \cdots u_\ell = v_1 cdots v_m w_1 \cdots w_n, where ui{u,θ(u)}u_i \in \{u, \theta(u)\} for all 1i1 \leq i \leq \ell, vj{v,θ(v)}v_j \in \{v, \theta(v)\} for all 1jm1 \leq j \leq m, wk{w,θ(w)}w_k \in \{w, \theta(w)\} for all 1k?n1 \leq k ?\leq n, and θ\theta is an antimorphic involution. More precisely, we show for which \ell, mm, and nn such an equation has only θ\theta-periodic solutions, i.e., uu, vv, and ww are in {t,θ(t)}\{t, \theta(t)\}^\ast for some word tt, closing an open problem by Czeizler et al. (2011)

    Tree species driving functional properties of mobile organic matter in throughfall and forest floor solutions of beech, spruce and pine forests

    Get PDF
    The chemical nature of mobile organic matter is a prerequisite for advancing our understanding of the C and nutrient cycling and other forest ecosystem processes. Tree species differ in leaf composition (e.g. nutrient, polyphenol content) and leaf litter quality, which in turn affects a variety of ecosystem processes. However, the composition of OM derived from living plant material via throughfall (TF) and its compositional fate traversing the forest floor (FF) is insufficiently understood. Are there tree-species specific differences in functional properties (e.g. aromaticity) of OM in TF and FF solutions collected from pine, spruce and different beech stands? And if yes- how do functional properties change with tree species and ecosystem compartment (throughfall vs. forest floor)? We addressed these questions by applying solid-state C-13 NMR spectroscopy to TF and FF solutions from European beech forests of the three DFG “Biodiversity Exploratories”, from Norway spruce sites of the Hainich-Dün-Exploratory and Scots pine stands in East-Thuringia. C-13 NMR spectroscopy revealed a homogeneous composition of TF-DOM under beech between the three Exploratories and exhibited remarkable tree-species related differences in DOM composition: Compared to spruce and pine, TF-DOM under beech showed higher intensities of aromatic and phenolic C (beech > pine > spruce) and lower ones of alkyl-C (pine ≈ spruce > beech). Consequently, beech TF exhibited higher aromaticity values and lower alkyl/O-alkyl ratios (i.e. extent of decomposition) in comparison to coniferous TF-DOM. FF-DOM under beech was very similar between the three “Biodiversity Exploratories” and surprisingly analog to FF-DOM under spruce, while under pine higher intensities of aromatic and phenolic C and alkyl-C (pine > beech ≈ spruce) and lower O-alkyl-C signals were observed. Thus, pine FF-DOM exhibited the highest values for both aromaticity (28%) and decomposition (0.87). In essence, tree-species effects became most notable for the composition and functionality of DOM in TF exhibiting consistently the highest aromatic and phenolic C signals for the beech sites. In view of the allelopathic effectiveness of phenolic compounds, the results might point to an increased allelopathic potential of beech TF, which successfully impairs competing plants and organisms and hence alter ecosystem processes and functioning. In the end, the ecological functions of DOM in ecosystems are still imperfectly understood

    Vitamin D and Systemic Lupus Erythematosus: Bones, Muscles, and Joints

    Get PDF
    Vitamin D3, or cholecalciferol, is the naturally occurring form of vitamin D that is converted in the skin and hydroxylated in the liver and kidney to the active form found in humans. The main role for vitamin D is calcium homeostasis, and low levels of vitamin D result in lower gastrointestinal absorption of calcium. Vitamin D is also critical for mineralization of bone tissue, muscle function, and coordination. Recent studies have found prevention of bone mass loss and reduction in falls and fractures in patients supplemented with vitamin D. A high percentage of systemic lupus erythematosus patients are reported to have insufficient or deficient levels of vitamin D. This paper reviews the biology of vitamin D, its role in calcium homeostasis, and how it contributes to the maintenance of bone, muscle, and joint function in older adults and individuals with systemic lupus erythematosus
    corecore