1,201 research outputs found

    Aspects of birth history and outcome in diplegics attending specialised educational facilities

    Get PDF
    Aim. We aimed to study functional mobility and visual performancein spastic diplegic children and adolescents attending specialisedschools.Methods. Spastic diplegia (SD) was confirmed by clinical examination. Birth and related history were added to explore relationships between SD, birth weight (BW) and duration of pregnancy. Place of birth, BW, gestational age (GA) and length of hospital stay were obtained by means of parental recall. Outcome measures included the functional mobility scale (FMS) and Beery tests of visuomotor integration (VMI) and visual perception (VIS).Results. Forty participants were included (age 7 years 5 months – 19 years 6 months). Term and preterm births were almost equally represented. Functional mobility assessments showed that 20 were walking independently in school and community settings and the remainder used walking aids or wheelchairs. There were no significant correlations between BW or GA and outcomes (FMS, VIS-z-scores or VMI-z-scores) and z-scores were low. VIS scores correlated significantly with chronological age (p=0.024). There were also significant correlations between VIS and VMI scores and school grade appropriateness (p=0.004; p=0.027, respectively). Interpretation. Both term and preterm births were represented, and outcomes were similar regardless of GA. VIS and VMIwere affected in both groups. Half of the group used assistive mobility devices and three-quarters were delayed in terms of their educational level. These problems require specialised teaching strategies, appropriate resources and a school environment that caters for mobility limitations

    Integrated Diamond Optics for Single Photon Detection

    Full text link
    Optical detection of single defect centers in the solid state is a key element of novel quantum technologies. This includes the generation of single photons and quantum information processing. Unfortunately the brightness of such atomic emitters is limited. Therefore we experimentally demonstrate a novel and simple approach that uses off-the-shelf optical elements. The key component is a solid immersion lens made of diamond, the host material for single color centers. We improve the excitation and detection of single emitters by one order of magnitude, as predicted by theory.Comment: 10 pages, 3 figure

    Status of p53 in first-trimester cytotrophoblastic cells

    Get PDF
    p53 has been called the cellular gatekeeper of the genome because it can induce cell-cycle arrest in G1, apoptosis or affect DNA replication in response to DNA damage. As p53 has been observed in first-trimester cytotrophoblastic cells (CTB), but its expression in normal cells is generally not detectable because of its short half-life, p53 could play an important role in cellular differentiation and/or in the control of the invasion of trophoblastic cells; therefore, p53 status was investigated in these cells. Using different antibodies recognizing different epitopes of p53 protein, abundant p53 expression was observed both in nuclear and in cytoplasmic compartments of first-trimester CTB. Whereas p53 was detected in the nuclei of few trophoblastic cells with an antibody recognizing the N-terminal epitope of the protein, high expression level of p53 in the cytoplasm of CTB was detected with an antibody recognizing the middle part of p53. The lack of immunoreactivity of p53 with antibodies recognizing the epitopes located at the N-terminus of p53 and the high level of p53 protein observed in the cytoplasm of CTB suggest that the N-terminus of p53 is involved in the formation of complexes. These cytoplasmic complexes were detected under non-reducing conditions in western blot analysis and had apparent molecular weights (MW) of 195, 167 or 125 kDa. These complexes could prolong the half-life of p53 in the cytoplasm of CTBs. By contrast, in the nuclei of CTBs, p53 seems to be present as a tetrame

    GRP78 as a marker of pre-eclampsia: an exploratory study

    Get PDF
    Although the exact mechanisms that lead to shallow invasion or defective trophoblastic differentiation in pre-eclampsia are still unknown, it is widely admitted that the etiology of pre-eclampsia is a defect in trophoblast invasion of the uterine spiral arteries. We have previously observed that the status of a chaperone protein, glucose regulated protein 78 (GRP78) is associated with the invasive properties of cytotrophoblastic cells; we therefore hypothesized that circulating GRP78 could serve as a diagnostic tool in pre-eclampsia. In a prospective case-control study, we quantified GRP78 autoantibodies, complexes of GRP78 with autoantibodies and GRP78 (C-term fragment, N-term fragment and full-length GRP78) by ELISA. Plasma from women diagnosed with pre-eclampsia (n = 16), from women during the first trimester of pregnancy who subsequently developed pre-eclampsia (n = 10) and from healthy pregnant women (controls, n = 58 at term, n = 26 at first trimester) were analysed and compared. We observed no significant difference between pre-eclamptic and healthy pregnant women for autoantibodies-GRP78 complexes or total GRP78 at both first trimester and at delivery. In contrast, the ratio of C-terminal GRP78 over full length GRP78 was significantly different in plasma of pre-eclamptic patients as compared with controls both during first trimester (P < 0.004) and at term (P < 0.0001). Our findings suggest that circulating C-terminal GRP78 reflect the invasive properties of cells, and could be used as a predictive marker for pre-eclampsia early in pregnanc

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    MTHFD1 controls DNA methylation in Arabidopsis.

    Get PDF
    DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases

    Prediction of Electrolyte Distribution in Technical Gas Diffusion Electrodes From Imaging to SPH Simulations

    Get PDF
    The performance of the gas diffusion electrode GDE is crucial for technical processes like chlorine alkali electrolysis. The function of the GDE is to provide an intimate contact between gaseous reactants, the solid catalyst, and the liquid electrolyte. To accomplish this, the GDE is composed of wetting and non wetting materials to avoid electrolyte breakthrough. Knowledge of the spatial distribution of the electrolyte in the porous structure is a prerequisite for further improvement of GDE. Therefore, the ability of the electrolyte to imbibe into the porous electrode is studied by direct numeric simulations in a reconstructed porous electrode. The information on the geometry, including the information on silver and PTFE distribution of the technical GDE, is extracted from FIB SEM imaging including a segmentation into the different phases. Modeling of wetting phenomena inside the GDE is challenging, since surface tension and wetting of the electrolyte on silver and PTFE surfaces must be included in a physically consistent manner. Recently, wetting was modeled from first principles on the continuum scale by introducing a contact line force. Here, the newly developed contact line force model is employed to simulate two phase flow in the solid microstructures using the smoothed particle hydrodynamics SPH method. In this contribution, we present the complete workflow from imaging of the GDE to dynamic SPH simulations of the electrolyte intrusion process. The simulations are used to investigate the influence of addition of non wetting PTFE as well as the application of external pressure differences between the electrolyte and the gas phase on the intrusion proces

    A recombinant herpesviral vector containing a near-full-length SIVmac239 genome produces SIV particles and elicits immune responses to all nine SIV gene products

    Get PDF
    The properties of the human immunodeficiency virus (HIV) pose serious difficulties for the development of an effective prophylactic vaccine. Here we describe the construction and characterization of recombinant (r), replication-competent forms of rhesus monkey rhadinovirus (RRV), a gamma-2 herpesvirus, containing a near-full-length (nfl) genome of the simian immunodeficiency virus (SIV). A 306-nucleotide deletion in the pol gene rendered this nfl genome replication-incompetent as a consequence of deletion of the active site of the essential reverse transcriptase enzyme. Three variations were constructed to drive expression of the SIV proteins: one with SIV\u27s own promoter region, one with a cytomegalovirus (cmv) immediate-early promoter/enhancer region, and one with an RRV dual promoter (p26 plus PAN). Following infection of rhesus fibroblasts in culture with these rRRV vectors, synthesis of the early protein Nef and the late structural proteins Gag and Env could be demonstrated. Expression levels of the SIV proteins were highest with the rRRV-SIVcmv-nfl construct. Electron microscopic examination of rhesus fibroblasts infected with rRRV-SIVcmv-nfl revealed numerous budding and mature SIV particles and these infected cells released impressive levels of p27 Gag protein ( \u3e 150 ng/ml) into the cell-free supernatant. The released SIV particles were shown to be incompetent for replication. Monkeys inoculated with rRRV-SIVcmv-nfl became persistently infected, made readily-detectable antibodies against SIV, and developed T-cell responses against all nine SIV gene products. Thus, rRRV expressing a near-full-length SIV genome mimics live-attenuated strains of SIV in several important respects: the infection is persistent; \u3e 95% of the SIV proteome is naturally expressed; SIV particles are formed; and CD8+ T-cell responses are maintained indefinitely in an effector-differentiated state. Although the magnitude of anti-SIV immune responses in monkeys infected with rRRV-SIVcmv-nfl falls short of what is seen with live-attenuated SIV infection, further experimentation seems warranted
    • …
    corecore