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A s  computers have become increasingly powerful, the field of design optimization has 
moved toward higher fidelity models ( 
design. One way in which this movement has manifested itselfis in th 
of multidisciplinary design optimizatio 
large and very complicat-ed, a modalar 
parameters to optimize, derimtives mu 
paper describes how the quasi-proced 
Kroo [9] and the technique of antomatic differentiation E61 can be combined to 
address these needs- The two techniques are explained, the manner in which they were 
integrated into a singte framework is described. and the result of using this framework for 
an optimization problem in airplane design is presented. 

1 Introduction 

Over the past several years, there bas been a movemen 
ward multidisciplinary design optimization (hf DO), incorporating several design goals into 
a single optimization procedure. For example, an airplane designer may incorporate ffuid 
dynamics and structural andysis into a single model. For optimization of the design p 
eters for this multidisciplinary model to remain practical, the model should have a mo 
design and derivatives must be computed efficiently, Modularity is important because the 
multidiscipl,inary model may be created by several development teams and also because 
it  simplifies the integration of new code when a better model for any of the disciplines 
becomes available. The combination of automatic differentiation and the quasi-procedd 
method provides a n  attractive environment for doing MDO. The quasi-procedural method 
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is a modular framework for optimization and provides efficiency by avoiding redundant com- 
putations. Automatic differentiation provides efficiency through fast, accurate derivatives 
and supports the integration of new code by automatically creating modules that compute 
derivatives quickly with minimal user intervention. 

This paper describes how automatic differentiation and the quasi-procedural method 
were applied to the optimization of an airplane design. Sections 2 and 3 introduce the 
quasi-procedural method and automatic differentiation, respectively. Section 4 describes 
how the two techniques were incorporated into a single environment and Section 5 presents 
our experimental results using this environment. Section 6 concludes with an analysis of 
how the combined approach might facilitate MDO, and also an assessment of when this 
approach might not be appropriate. 

2 The quasi-procedural method 

The quai-procedural method [4,?] is a form of non-procedural programming. UnIike 
conventional procedural programs in which computation proceeds from inputs to outputs 
according to a rigid structure, non-procedural systems are free to reorganize coaputations 
as necessary to compute the desired outputs. Thus, it is the o 
tation, rather than the inpats, However, non-procedmal 
fine granularity, as programmers can often utilize know 
extremely efficient small procedural subprograms. 

2.1 A composite system 

The quasi-procedural method attempts to exploit the best of both methods by dowing 
the programmer to develop efficient subprograms and providinga system for linking th  
subprograms so that they can be executed non-procedudy. This a g e  system is dem 
driven. When the d u e  of a variable is requested, the executive system determines which 
subprogram is responsible for computing that d u e  and runs the appropriate subroutine. 
If that routine requires inputs, it informs the executive; the executive provides the desired 
inputs either by looking them up in a database or by executing additioaal routines. 

This type of request-driven execution is depicted in Figure 1. For example, if the value 
of I is desired. the executive invokes subprogram 5.  Subprogram 5 requires values for 
C and H, which causes the executive to invoke subprograms 3 and 4. This sequence of 
requests continues until values for A ,  B, C, and D are provided, at which point execution 
of the subprograms commences, and a value for I is produced. This approach, together 
with a method for assessing the validity of the values of intermediate variables (so that 
upon a request for a n  input value, the executive system can determine whether to provide 
a previously computed value or to recompute the value), constitutes the quasi-procedural 
method. 

The importance of maintaining information about the validity of intermediate values 
can be seen by again considering the program in Figure 1. Suppose we compute the value 
of I as before, then decide we want to change the value of design parameter C and recompute 
I. Since the values of E, F, and G do not depend on C, there is no need to recompute these 
values by executing subprograms 1, 2, and 3. Instead, it is sufficient to recompute H and 
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I 
Figure I: A sample computational path 

I by executing subprograms 4 and 5. This potentially very large compatational savings is 
the benefit of using the quasi-procedurd method. 

2.2 Modularity 
An important characteristic of the quasi-procedural methodin adktion to its 

is its modularity. Each of the subprograms represents a separate modde, and it is 
to  replace one of these subprograms without affecting the rest of the computation. 
ability to  incorporate new code without having to rewrite, or even recompile, modules 
corresponding to  other parts of the computation is very important to MDO. New or better 
modules will frequently be added to the multidisciplinary model, but other development 
teams should be unaffected by these modifications. Thus, modularity is an important 
consideration for any framework to be used in support of MDO. 

2.3 GENIE 

GENIE is a generic framework for engineering computations [4,7]. GENIE provides a 
set of routines that facilitates interfacing a set of modeling routines to the quasi-procedural 
method. This interface is provided via GET and PUT routines, and the computation pro- 
ceeds in the following manner: 

1. The optimizer issues a GET operation, signaling a request for a specified objective 
function or constraint value. 

2. The GET routine selects the appropriate analysis routine and calls it. 
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3. The analysis routine issues one or more calls to GET to load the required input 
variables. In the event that the values of these variables are not known or are invalid. 
the GENIE executive calls the appropriate analysis routine, and the process repeats. 

Thus, GET is called recursively until the values of all required input variables are known. 
This method enables quantities to be computed only as needed and without afixed execution 
path. -4 sample analysis routine is shown in Figure 2. 

As was mentioned above, a great deal of the efficiency of the quasi-procedural method 
can be attributed to avoiding unnecessary recomputing of intermediate quantities. Thus 
a major function of the GENIE framework is maintaining information about the validity 
of the values of variables. Whenever one of the input parameters for a routine is modified 
(marked ‘invalid’), the quasi-procedural executive marks all outputs of that routine ’invalid.’ 

3 Automat i c  DZerentiation and ADIFOR 

Ln general, multidisciplinary design optimization requires the derivatives of an o 
tive function and several constraints with respect to many design parameters. .Since 
function is typically described by an extremely complicated computer program, nsin 
symbolic manipulator, such as Maple 131 is nsnalry not an option. Simikly, develop 
derivative code by hand is unattractive, because it is complicated, tedious, and prone 
errors. This approach is also ill-suited for rapid proto-typing, where parts of the system 
model may change several times, requiring additional code development for each new part. 
Consequently, optimization often relies on divided difference approximations to the desired 
derivatives. However, if an appropriate step size is not selected, these approximations can 
be grossly inaccurate. This hinders rapid proto-typing, because finding a good step size 
can be difficult and time-consuming, and a new step size must be determined each time 
the system model changes. Divided difference approximations may &Q take a b  
compute. 

entiation is a technique for computing the derivatives of a complicated function expressed 
in the form of a computer program [SI. The execution of a computer program consists of 
the composition of many elementary functions (such as multiplication, square root, and 
hyperbolic cosine), for each of which an analytic expression for derivatives is well known. 
So, by simply applying the chain rule 

An alternative to all of these techniques. is automatic differentiation. A 

repeatedly, it is possible to compute the derivatives of the function. For example, the code 
segment : 

y = 2*x*x + 3*x + 7 
z = 4 * s in (x )  
f = sqrt(y*y + z*z> 

may be converted- into: 
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C Profile : 
c--------------------- 
C 
C density and velocity. 

This routine computes the dynamic pressure for a given 

real Vknotr, rho, Vfps, DynamicPress 

logical Abort 

C Required inputs: 
C---------------- 

call GET(Vknots, ’Speed’ 1 
call GET(rho , ’Density’ 1 
if ( A b o r t 0  1 return 

C Calculations : 
c------ ------------ 

Vfps = Vknots*l.69 
Dynamicpress = .5  * rho * Vfps*Vfps 

return 
end 

Figure 2: A sample analysis routine 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof, The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 



y = 2.0*x*x i 3.0*x + 7.0 
g-y = 4.0*x*g-x + 3.0*g-x 
z = 4.0  * sin(x) 
g-2 = 4.0*g~x*cos(x) 
f = sqrt(y*y + z*z )  
g-f = -0.5 * (Z.O*y*g-g + 2.0*z*g-z)/ f 

Here, g-rar represents the derivatives of uar with respect to the independent variables. in 
this case x. Thus, if g i  is initialized to 1.0 (since 2 = 1.0): upon exit the value of gf 
will be 2. If x,y,z, and f were vectors, then the appropriate initial value for g-x would be 
an  identity matrix and g f  would still represent 2. For this problem. the value of g_x is 
propagated through the derivative computation: hence. g_x is termed the seed rncrtri3: for 
this computation [2]. 

While symbolic differentiation uses the rules of calcuIus in a more or less mechanical 
way, automatic differentiation is intimately related to the program for the computation of 
the function to be differentiated. By applying the chain-rule step by step to the elementary 
operations executed in the course of computing the "function," automatic diffcrentiation 
computes exact derivatives (within the limits of finite precision arithmetic) and avoids the 
potential pitfalls of divided differences. The technique of automatic Herentiation is directly 
applicable to complex functions with branches and loops. 

Automatic differentiation is amenable to modular program design. The ability to control 
which derivatives are computed through an appropriate initialization of the seed matrix 
means that we do not need to know which design parameters are being optimized a t  the 
time the derivative module is created. Furthermore, we can process individual modules 
separately, then connect the derivative modules using seed matrices. For example, suppose 
module A computes y(z> and module B computes ~ ( y ) ,  and that we process these modules 
to yield derivative modules g 4  and gE. Then, if we initialize g z * ( t h e  seed matrix for 
module gA) to an identity matrix, module g 4  will compute g-y = 2. If we then pass g-y 
to module g E  as a seed matrix, this module will compute g 2  = s x g-y = 3 x 2 = % 
directly, exactly as if z(z) was computed in a single module. 

Many tools have been developed to support automatic differentiation. We used ADLFOR 
for our application. ADIFOR is a tool which provides automatic differentiation for programs 
written in Fortran i 7  [I]. Given a Fortran subroutine (or collection of subroutines) for a 
function f ,  ADIFOR produces Fortran 77 subroutines for the computation of the derivatives 
of this function. ADIFOR differs from other approaches to automatic differentiation by 
being based on a source translator paradigm (as opposed to operator overloading) and by 
having been designed from the outset with large-scale codes in mind. Both features make it 
possible to easily incorporate derivative computation into a quasi-procedural system init idy 
designed only to compute function values. 

a -  

4 Adding  au tomat i c  differentiation to t h e  QPM framework 

In order to allow GENIE to work together with ADIFOR-generated code, several en- 
hancements were made to the GENIE framework. First, additional storage in the database 
was allocated, so that the database manager would have additional space to store gradients. 
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PASS2 
PASS3 19.9 
PASS4 19.9 

Table 1: Results for the PASS problem on an RS6000 

This storage is provided by an array which is parallel to the array in which the regular vari- 
ables are stored. This enables lookup, validity checking, and other database maintenance 
operations to  be performed for both a variable and the associated gradient at the same 
time. Second. the executive was modified so that the GET and PUT routines wodd return 
and store the values of a variable and the associated gradient (actually, new routines. called 
G-GET and G ~ u T ,  were created to provide this functionality). Finally, one of the G E N E  
initialization routines was modified to perform the seed matrix initialization required by 
ADIFOR-generated code. By zeroing all elements of the array containing gradients, then 
setting the fh element of the gradient associated with the It'' design variable equal to 1.0, 
an identity seed matrix is created automatically. 

Making these changes to  the GENIE framework has two important benefits. First, 
adding support for automatic differentiation to  the framework makes using AD easier. The 
user does not have to  deal with derivative object allocation, seed matrix initialization, or 
interfaces between modules. Au of these tasks are done automatically in the executive. Once 
an analysis routine has been run through ADIFOR, the user does not even need to be aware 
that automatic differentiation is being used. Second, creating a direct association between 
variables and their derivative objects in the database means that consistency maintenance 
for the derivative objects can be done with zero additional overhead. 

5 Experimental Results 

To examine the  suitability of the QPM-AD combination for multidisciplinary optimiza- 
tion, we applied the techniques to  a complete aircraft model. The problem being studied is 
the synthesis of a twin-engined, 1 00-passenger, medium-range commercial transport. The 
objective is to  minimize direct operating costs, subject to certain constraints in performance 
measures such as range and maximum field lengths. The design variables are weights, wing 
and tail size and shape parameters. takeoff engine size, cruise altitudes, and takeoff flap 
deflection. 

The multidiscipljnary analysis routines for the PASS aircraft model were processed us- 
ing ADIFOR, which automatically replaced calls to GET and PUT with calls to G-GET and 
G-PUT, respectively. When these routines were compiled and Linked with the enhanced 
GENIE framework and the NPSOL optimizer [SI, we were able to do airplane design opti- 
mization using the quasi-procedural method and automatic differentiation. 

The times required for the optimizer to find a minimum for various problems are re- 
ported in Tables 1-3. Problem PASS1 involves the optimization of 14 design parameters. 
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PASS1 
PASS2 DNC 
P.4SS3 37.3 
P.4SS4 30.7 

Table 2: Results for the PASS problem on a Sun SPARC IPX 

PASS2 3.7 
PASS3 4.9 
PASS4 5.0 

Table 3: Results for the PASS problem on an EBM SP1 node 

This problem was difficult to  optimize, and the observation that one design variable was 
not critical to the design led to  it’s removal, yielding problem PASS2. Problems PASS2 
and PASS3 involve the optimization of 13 design parameters, from different starting points. 
Problem PASS4 is the same as PASSS, but the opt imdty tolerance is reduced. Results are 
reported for the quasi-procedural method using divided difference approximation, abbre- 
viated QPM-DD, and for the augmented quasi-procedural method, using derivative code 
generated by ADIFOR, abbreviated QPM-AD. The ratio of QEM-DD to QPM-AD is also 
reported. The abbreviation DNC is used when the optimization termhated without con- 
verging. We believe that due to the sensitivity of divided differences to step size, and the 
limitations of finite precision arithmetic, the NPSOL optimizer occasionally could not ver- 
ify that it had a Kuhn-Tucker point on the SPXRC workstation, but could on the IBiM 
machines. This problem did not occur when derivatives were computed using automatic 
differentiation. 

Design optimization using the quasi-procedural method is typically faster than de- 
sign optimization without the quasi-procedural method [4]. Because the quasi-procedural 
method employs consistency maintenance and does not recompute values unless neces- 
sary, a great deal of computational cost can be eliminated. Furthermore, the quasi- 
procedural method with automatic differentiation often performs much better than the 
quasi-procedural method using divided difference approximations. The reason for the im- 
provement is twofold: 

1. The hybrid mode of automatic differentiation implemented by ADIFOR is often more 
efficient than divided differences. This is especially true of programs with many 
assignment statements with complex arithmetic expressions on the right hand side. 
The derivatives of these expressions are computed using the reverse mode of automatic 
differentiation, which requires a constant multiple of the time required to evaluate the 
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expression. Divided differences and the forward mode of automatic differentiation 
require time linear in the number of design variables. This is a generd speedup seen 
in many applications of ADIFOR to engineering codes, and is not specific to the 
quasi-procedural method. 

2. The perturbing of design variables needed to compute approximate derivatives using 
divided differences destroys the validity of the values of variables depending on those 
design variables. Thus, much of the efficiency of the quasi-procedural method is lost. 
GENIE compensates for this inefficiency by employing a specialized technique [4] to 
avoid recomputation insofar as possible. However, this advanced technique is inferior 
to the ability to compute derivatives without affecting the validity of any values, as 
is provided by automatic differentiation. 

6 Conclusions 

Multidisciplinary optimization has  three distinguishing features: the system is often 
modelled by a large. complicated program developed my many different teams; there may 
be many changes to  the system model, due either to rapid proto-typing or model refinement; 
and there is a need for derivatives with respect to many different design parameters, but 
not necessarily the same set of parameters from iteration to iteration or run to run. The 
quasi-procedural method and automatic differentiation can together provide a framework 
which is well-suited for optimization problems of this nature. 

Large, complicated programs with multiple authors are most easily expressed in a mod- 
ular fashion. Both quasi-procedurd programming and automatic differentiation support 
this paradigm. Changes to the system model also create a need for modularity, as well as 
a mechanism for developing derivative code for new modules as quickly and easily as pos- 
sible. Automatic differentiation is capable of automatically creating derivative code from 
function code. with minimal user intervention. Differentiating with respect to many de- 
sign parameters creates a need for efficient derivative computation. The combination of 
automatic differentiation and the quasi-procedural method provides derivative code that 
is much faster t h a n  standard divided difference approximations. This speedup can be at- 
tributed to the efficiency of the hybrid mode of automatic differentiation, the capability of 
quasi-procedural programming to avoid redundant computation, and the synergistic effects 
of using the two methods together. Furthermore, derivatives computed using automatic 
differentiation are more accurate than divided difference approximations, which may lead 
to more rapid convergence for some applications. The seed matrix interface of automatic 
differentiation also provides a convenient mechanism for handling variation in the set of 
parameters with respect to which we wish to differentiate. 

Automatic differentiation and the quasi-procedural method are not without their limita- 
tions. There is an overhead associated with the executive of the quasi-procedural method, 
and if the granularity of the modules is too fine, performance will suffer. On the other 
hand, if the granularity is too coarse, or if modules are highly interconnected, it may be 
necessary to execute every module for every iteration, effectively mimicking the behav- 
ior of a procedural program. In addition, automatic differentiation produces code which 
computes accurate local derivatives. However, if the function being differentiated is "wig- 
gly," this information might not be useful for optimization. Derivative-free optimization 
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techniques such as simulated annealing and genetic algorithms used in combination with 
the quasi-procedural method have proven effective in handling such functions [SI. Despite 
these minor limitations, the combination of the quasi-procedural method and automatic 
differentiation promises to be an effective tool for multidisciplinary optimization. 
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