
Using Automatic Differentiation with the
Quasi-Procedural Met hod for Multidisciplinary

Design Optimization'
Fca

%,I I
w86

by

Steve -4ltus:. Chris Bischofr, Paul Hovlandg, and Ilan Kroot.

Submitted to
34th A IAA Aerospace Sciences Meeting

X bs trac t

A s computers have become increasingly powerful, the field of design optimization has
moved toward higher fidelity models (
design. One way in which this movement has manifested itselfis in th
of multidisciplinary design optimizatio
large and very complicat-ed, a modalar
parameters to optimize, derimtives mu
paper describes how the quasi-proced
Kroo [9] and the technique of antomatic differentiation E61 can be combined to
address these needs- The two techniques are explained, the manner in which they were
integrated into a singte framework is described. and the result of using this framework for
an optimization problem in airplane design is presented.

1 Introduction

Over the past several years, there bas been a movemen
ward multidisciplinary design optimization (hf DO), incorporating several design goals into
a single optimization procedure. For example, an airplane designer may incorporate ffuid
dynamics and structural andysis into a single model. For optimization of the design p
eters for this multidisciplinary model to remain practical, the model should have a mo
design and derivatives must be computed efficiently, Modularity is important because the
multidiscipl,inary model may be created by several development teams and also because
it simplifies the integration of new code when a better model for any of the disciplines
becomes available. The combination of automatic differentiation and the quasi-procedd
method provides a n attractive environment for doing MDO. The quasi-procedural method

'This work was supported by the Office of Scientific Computing, US. Department of Energy, under
Contract W-31-109-Eng-38, the National Aerospace Agency under Purchase Order L2593SD, the US. De-
partment of Defense through an NDSEG fellowship, and the Xational Science Foundation through NSF
Cooperative Agreement No. CCR-9120008.

'Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, {altus,
)croo)Oleland. st anf ord. edu.

'Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue,
Argonne, i L 60439, (bischof , hov1and)Omcs. anl. gov.

Thapbmitted manuscript her teen auth~nd
bY a contractor of the U.S Garemment

Acfwdingly, ths U. S Gowrnmnt retains a
nonexclusive. royalty-frae l i inm m publish
w raproduce the published form of this

under contract NO. W-31-104ENG-38.

_I

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced h m the best available original
dollrment

is a modular framework for optimization and provides efficiency by avoiding redundant com-
putations. Automatic differentiation provides efficiency through fast, accurate derivatives
and supports the integration of new code by automatically creating modules that compute
derivatives quickly with minimal user intervention.

This paper describes how automatic differentiation and the quasi-procedural method
were applied to the optimization of an airplane design. Sections 2 and 3 introduce the
quasi-procedural method and automatic differentiation, respectively. Section 4 describes
how the two techniques were incorporated into a single environment and Section 5 presents
our experimental results using this environment. Section 6 concludes with an analysis of
how the combined approach might facilitate MDO, and also an assessment of when this
approach might not be appropriate.

2 The quasi-procedural method

The quai-procedural method [4,?] is a form of non-procedural programming. UnIike
conventional procedural programs in which computation proceeds from inputs to outputs
according to a rigid structure, non-procedural systems are free to reorganize coaputations
as necessary to compute the desired outputs. Thus, it is the o
tation, rather than the inpats, However, non-procedmal
fine granularity, as programmers can often utilize know
extremely efficient small procedural subprograms.

2.1 A composite system

The quasi-procedural method attempts to exploit the best of both methods by dowing
the programmer to develop efficient subprograms and providinga system for linking th
subprograms so that they can be executed non-procedudy. This a g e system is dem
driven. When the d u e of a variable is requested, the executive system determines which
subprogram is responsible for computing that d u e and runs the appropriate subroutine.
If that routine requires inputs, it informs the executive; the executive provides the desired
inputs either by looking them up in a database or by executing additioaal routines.

This type of request-driven execution is depicted in Figure 1. For example, if the value
of I is desired. the executive invokes subprogram 5. Subprogram 5 requires values for
C and H, which causes the executive to invoke subprograms 3 and 4. This sequence of
requests continues until values for A , B, C, and D are provided, at which point execution
of the subprograms commences, and a value for I is produced. This approach, together
with a method for assessing the validity of the values of intermediate variables (so that
upon a request for a n input value, the executive system can determine whether to provide
a previously computed value or to recompute the value), constitutes the quasi-procedural
method.

The importance of maintaining information about the validity of intermediate values
can be seen by again considering the program in Figure 1. Suppose we compute the value
of I as before, then decide we want to change the value of design parameter C and recompute
I. Since the values of E, F, and G do not depend on C, there is no need to recompute these
values by executing subprograms 1, 2, and 3. Instead, it is sufficient to recompute H and

2

I
Figure I: A sample computational path

I by executing subprograms 4 and 5. This potentially very large compatational savings is
the benefit of using the quasi-procedurd method.

2.2 Modularity
An important characteristic of the quasi-procedural methodin adktion to its

is its modularity. Each of the subprograms represents a separate modde, and it is
to replace one of these subprograms without affecting the rest of the computation.
ability to incorporate new code without having to rewrite, or even recompile, modules
corresponding to other parts of the computation is very important to MDO. New or better
modules will frequently be added to the multidisciplinary model, but other development
teams should be unaffected by these modifications. Thus, modularity is an important
consideration for any framework to be used in support of MDO.

2.3 GENIE

GENIE is a generic framework for engineering computations [4,7]. GENIE provides a
set of routines that facilitates interfacing a set of modeling routines to the quasi-procedural
method. This interface is provided via GET and PUT routines, and the computation pro-
ceeds in the following manner:

1. The optimizer issues a GET operation, signaling a request for a specified objective
function or constraint value.

2. The GET routine selects the appropriate analysis routine and calls it.

3

3. The analysis routine issues one or more calls to GET to load the required input
variables. In the event that the values of these variables are not known or are invalid.
the GENIE executive calls the appropriate analysis routine, and the process repeats.

Thus, GET is called recursively until the values of all required input variables are known.
This method enables quantities to be computed only as needed and without afixed execution
path. -4 sample analysis routine is shown in Figure 2.

As was mentioned above, a great deal of the efficiency of the quasi-procedural method
can be attributed to avoiding unnecessary recomputing of intermediate quantities. Thus
a major function of the GENIE framework is maintaining information about the validity
of the values of variables. Whenever one of the input parameters for a routine is modified
(marked ‘invalid’), the quasi-procedural executive marks all outputs of that routine ’invalid.’

3 Automat i c DZerentiation and ADIFOR

Ln general, multidisciplinary design optimization requires the derivatives of an o
tive function and several constraints with respect to many design parameters. .Since
function is typically described by an extremely complicated computer program, nsin
symbolic manipulator, such as Maple 131 is nsnalry not an option. Simikly, develop
derivative code by hand is unattractive, because it is complicated, tedious, and prone
errors. This approach is also ill-suited for rapid proto-typing, where parts of the system
model may change several times, requiring additional code development for each new part.
Consequently, optimization often relies on divided difference approximations to the desired
derivatives. However, if an appropriate step size is not selected, these approximations can
be grossly inaccurate. This hinders rapid proto-typing, because finding a good step size
can be difficult and time-consuming, and a new step size must be determined each time
the system model changes. Divided difference approximations may &Q take a b
compute.

entiation is a technique for computing the derivatives of a complicated function expressed
in the form of a computer program [SI. The execution of a computer program consists of
the composition of many elementary functions (such as multiplication, square root, and
hyperbolic cosine), for each of which an analytic expression for derivatives is well known.
So, by simply applying the chain rule

An alternative to all of these techniques. is automatic differentiation. A

repeatedly, it is possible to compute the derivatives of the function. For example, the code
segment :

y = 2*x*x + 3*x + 7
z = 4 * s in (x)
f = sqrt(y*y + z*z>

may be converted- into:

4

C Profile :
c---------------------
C
C density and velocity.

This routine computes the dynamic pressure for a given

real Vknotr, rho, Vfps, DynamicPress

logical Abort

C Required inputs:
C----------------

call GET(Vknots, ’Speed’ 1
call GET(rho , ’Density’ 1
if (A b o r t 0 1 return

C Calculations :
c------ ------------

Vfps = Vknots*l.69
Dynamicpress = .5 * rho * Vfps*Vfps

return
end

Figure 2: A sample analysis routine

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof, The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

y = 2.0*x*x i 3.0*x + 7.0
g-y = 4.0*x*g-x + 3.0*g-x
z = 4.0 * sin(x)
g-2 = 4.0*g~x*cos(x)
f = sqrt(y*y + z*z)
g-f = -0.5 * (Z.O*y*g-g + 2.0*z*g-z)/ f

Here, g-rar represents the derivatives of uar with respect to the independent variables. in
this case x. Thus, if g i is initialized to 1.0 (since 2 = 1.0): upon exit the value of gf
will be 2. If x,y,z, and f were vectors, then the appropriate initial value for g-x would be
an identity matrix and g f would still represent 2. For this problem. the value of g_x is
propagated through the derivative computation: hence. g_x is termed the seed rncrtri3: for
this computation [2].

While symbolic differentiation uses the rules of calcuIus in a more or less mechanical
way, automatic differentiation is intimately related to the program for the computation of
the function to be differentiated. By applying the chain-rule step by step to the elementary
operations executed in the course of computing the "function," automatic diffcrentiation
computes exact derivatives (within the limits of finite precision arithmetic) and avoids the
potential pitfalls of divided differences. The technique of automatic Herentiation is directly
applicable to complex functions with branches and loops.

Automatic differentiation is amenable to modular program design. The ability to control
which derivatives are computed through an appropriate initialization of the seed matrix
means that we do not need to know which design parameters are being optimized a t the
time the derivative module is created. Furthermore, we can process individual modules
separately, then connect the derivative modules using seed matrices. For example, suppose
module A computes y(z> and module B computes ~ (y) , and that we process these modules
to yield derivative modules g 4 and gE. Then, if we initialize g z * (t h e seed matrix for
module gA) to an identity matrix, module g 4 will compute g-y = 2. If we then pass g-y
to module g E as a seed matrix, this module will compute g 2 = s x g-y = 3 x 2 = %
directly, exactly as if z(z) was computed in a single module.

Many tools have been developed to support automatic differentiation. We used ADLFOR
for our application. ADIFOR is a tool which provides automatic differentiation for programs
written in Fortran i 7 [I]. Given a Fortran subroutine (or collection of subroutines) for a
function f , ADIFOR produces Fortran 77 subroutines for the computation of the derivatives
of this function. ADIFOR differs from other approaches to automatic differentiation by
being based on a source translator paradigm (as opposed to operator overloading) and by
having been designed from the outset with large-scale codes in mind. Both features make it
possible to easily incorporate derivative computation into a quasi-procedural system init idy
designed only to compute function values.

a -

4 Adding au tomat i c differentiation to t h e QPM framework

In order to allow GENIE to work together with ADIFOR-generated code, several en-
hancements were made to the GENIE framework. First, additional storage in the database
was allocated, so that the database manager would have additional space to store gradients.

6

PASS2
PASS3 19.9
PASS4 19.9

Table 1: Results for the PASS problem on an RS6000

This storage is provided by an array which is parallel to the array in which the regular vari-
ables are stored. This enables lookup, validity checking, and other database maintenance
operations to be performed for both a variable and the associated gradient at the same
time. Second. the executive was modified so that the GET and PUT routines wodd return
and store the values of a variable and the associated gradient (actually, new routines. called
G-GET and G ~ u T , were created to provide this functionality). Finally, one of the G E N E
initialization routines was modified to perform the seed matrix initialization required by
ADIFOR-generated code. By zeroing all elements of the array containing gradients, then
setting the fh element of the gradient associated with the It'' design variable equal to 1.0,
an identity seed matrix is created automatically.

Making these changes to the GENIE framework has two important benefits. First,
adding support for automatic differentiation to the framework makes using AD easier. The
user does not have to deal with derivative object allocation, seed matrix initialization, or
interfaces between modules. Au of these tasks are done automatically in the executive. Once
an analysis routine has been run through ADIFOR, the user does not even need to be aware
that automatic differentiation is being used. Second, creating a direct association between
variables and their derivative objects in the database means that consistency maintenance
for the derivative objects can be done with zero additional overhead.

5 Experimental Results

To examine the suitability of the QPM-AD combination for multidisciplinary optimiza-
tion, we applied the techniques to a complete aircraft model. The problem being studied is
the synthesis of a twin-engined, 1 00-passenger, medium-range commercial transport. The
objective is to minimize direct operating costs, subject to certain constraints in performance
measures such as range and maximum field lengths. The design variables are weights, wing
and tail size and shape parameters. takeoff engine size, cruise altitudes, and takeoff flap
deflection.

The multidiscipljnary analysis routines for the PASS aircraft model were processed us-
ing ADIFOR, which automatically replaced calls to GET and PUT with calls to G-GET and
G-PUT, respectively. When these routines were compiled and Linked with the enhanced
GENIE framework and the NPSOL optimizer [SI, we were able to do airplane design opti-
mization using the quasi-procedural method and automatic differentiation.

The times required for the optimizer to find a minimum for various problems are re-
ported in Tables 1-3. Problem PASS1 involves the optimization of 14 design parameters.

7

PASS1
PASS2 DNC
P.4SS3 37.3
P.4SS4 30.7

Table 2: Results for the PASS problem on a Sun SPARC IPX

PASS2 3.7
PASS3 4.9
PASS4 5.0

Table 3: Results for the PASS problem on an EBM SP1 node

This problem was difficult to optimize, and the observation that one design variable was
not critical to the design led to it’s removal, yielding problem PASS2. Problems PASS2
and PASS3 involve the optimization of 13 design parameters, from different starting points.
Problem PASS4 is the same as PASSS, but the opt imdty tolerance is reduced. Results are
reported for the quasi-procedural method using divided difference approximation, abbre-
viated QPM-DD, and for the augmented quasi-procedural method, using derivative code
generated by ADIFOR, abbreviated QPM-AD. The ratio of QEM-DD to QPM-AD is also
reported. The abbreviation DNC is used when the optimization termhated without con-
verging. We believe that due to the sensitivity of divided differences to step size, and the
limitations of finite precision arithmetic, the NPSOL optimizer occasionally could not ver-
ify that it had a Kuhn-Tucker point on the SPXRC workstation, but could on the IBiM
machines. This problem did not occur when derivatives were computed using automatic
differentiation.

Design optimization using the quasi-procedural method is typically faster than de-
sign optimization without the quasi-procedural method [4]. Because the quasi-procedural
method employs consistency maintenance and does not recompute values unless neces-
sary, a great deal of computational cost can be eliminated. Furthermore, the quasi-
procedural method with automatic differentiation often performs much better than the
quasi-procedural method using divided difference approximations. The reason for the im-
provement is twofold:

1. The hybrid mode of automatic differentiation implemented by ADIFOR is often more
efficient than divided differences. This is especially true of programs with many
assignment statements with complex arithmetic expressions on the right hand side.
The derivatives of these expressions are computed using the reverse mode of automatic
differentiation, which requires a constant multiple of the time required to evaluate the

8

expression. Divided differences and the forward mode of automatic differentiation
require time linear in the number of design variables. This is a generd speedup seen
in many applications of ADIFOR to engineering codes, and is not specific to the
quasi-procedural method.

2. The perturbing of design variables needed to compute approximate derivatives using
divided differences destroys the validity of the values of variables depending on those
design variables. Thus, much of the efficiency of the quasi-procedural method is lost.
GENIE compensates for this inefficiency by employing a specialized technique [4] to
avoid recomputation insofar as possible. However, this advanced technique is inferior
to the ability to compute derivatives without affecting the validity of any values, as
is provided by automatic differentiation.

6 Conclusions

Multidisciplinary optimization has three distinguishing features: the system is often
modelled by a large. complicated program developed my many different teams; there may
be many changes to the system model, due either to rapid proto-typing or model refinement;
and there is a need for derivatives with respect to many different design parameters, but
not necessarily the same set of parameters from iteration to iteration or run to run. The
quasi-procedural method and automatic differentiation can together provide a framework
which is well-suited for optimization problems of this nature.

Large, complicated programs with multiple authors are most easily expressed in a mod-
ular fashion. Both quasi-procedurd programming and automatic differentiation support
this paradigm. Changes to the system model also create a need for modularity, as well as
a mechanism for developing derivative code for new modules as quickly and easily as pos-
sible. Automatic differentiation is capable of automatically creating derivative code from
function code. with minimal user intervention. Differentiating with respect to many de-
sign parameters creates a need for efficient derivative computation. The combination of
automatic differentiation and the quasi-procedural method provides derivative code that
is much faster t h a n standard divided difference approximations. This speedup can be at-
tributed to the efficiency of the hybrid mode of automatic differentiation, the capability of
quasi-procedural programming to avoid redundant computation, and the synergistic effects
of using the two methods together. Furthermore, derivatives computed using automatic
differentiation are more accurate than divided difference approximations, which may lead
to more rapid convergence for some applications. The seed matrix interface of automatic
differentiation also provides a convenient mechanism for handling variation in the set of
parameters with respect to which we wish to differentiate.

Automatic differentiation and the quasi-procedural method are not without their limita-
tions. There is an overhead associated with the executive of the quasi-procedural method,
and if the granularity of the modules is too fine, performance will suffer. On the other
hand, if the granularity is too coarse, or if modules are highly interconnected, it may be
necessary to execute every module for every iteration, effectively mimicking the behav-
ior of a procedural program. In addition, automatic differentiation produces code which
computes accurate local derivatives. However, if the function being differentiated is "wig-
gly," this information might not be useful for optimization. Derivative-free optimization

9

techniques such as simulated annealing and genetic algorithms used in combination with
the quasi-procedural method have proven effective in handling such functions [SI. Despite
these minor limitations, the combination of the quasi-procedural method and automatic
differentiation promises to be an effective tool for multidisciplinary optimization.

Acknowledgments

We thank Peter Gage for his contributions to the deveiopment of the combined QPM-
AD framework and for his assistance in the refinement of this paper. We also thank Alan
Carle for his instrumental role in the ADIFOR project.

References

[I] Christian Bischof, Alan Carle, George Corliss. Andreas Griewank, and Paul Hovland.
ADIFOR: Generating derivative codes from Fortran programs. Scientific Programming,
I(1):11-29. 1992.

[2] Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparse
Jacobians. Technical Report ANL/MCS-TM-l58, Mathematics and Computer Science
Division, Argonne National Laboratory, 1991.

[3] Bruce W. Char, Keith 0. Geddes, Gaston H. Gonnet, Benton L. Leong, Michael B.
Monagan, and Stephen M. Watt. Maple V Language Reference Manual. Springer Verlag,
New York. 1991.

[4] P. Gage and I. Kroo. Development of the quasi-procedural method for use
in aircraft configuration optimization. Technical Report AIAA-92-4693, Fourth
AIAA/USXF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimiza-
tions, September 1992.

[5] P. E. Gill, W. Murray, M. A. Saundets, and M. H. Wright. User’s guide for NPSOL
(version 4.0): A Fortran package for nonlinear programming. Technical Report SOL
86-2, Department of Operations Research, Stanford University, Stanford, CA, 1986.

[SI Andreas Griewank. On automatic differentiation. In Mathematical Programming: Recent
Developments and Applications, pages 83-108, Amsterdam, 1989. Kluwer Academic
Publishers.

[7] I. Kroo. An interactive system for aircraft design and optimization. Technical Report
AIAA-92- 1 190, AIA.4 Aircraft Design Conference, February 1992.

[8] I. Kroo, S. Xltus, R. Braun, P. Gage, and I. Sobieski. Multidisciplinary optimiza-
tion methods for aircraft preliminary design. Technical Report AXAA-94-2543, Fifth
AIA A / NASA / U S A F / IS S M 0 Symposium on E/I ul tidisciplinary Analysis and Op timiza-
tion, September 1994.

191 I. Kroo and M. Takai. A quasi-procedural, knowledge-based system for aircraft de-
sign. Technical Report AIAA-88-4428, AIAA Aircraft Design, Systems, and Operations
Meeting, September 1988.

10

